Christman Field Latest Observations
Date Time
MST
Temp
°F
RH
%
DewPt
°F
Wind
mph
Dir
°
Gust
mph
Dir
°
Press
in Hg
Solar
W/m^2
Prec
in
2019-11-12 06:00 9.8 88.6 7.2 0.7 166 3.2 166 24.991 0.0 0.00
2019-11-12 05:55 10.1 89.3 7.6 0.3 240 1.7 333 24.992 0.0 0.00
2019-11-12 05:50 11.6 86.3 8.3 0.7 352 2.1 352 24.993 0.0 0.00
2019-11-12 05:45 13.2 88.8 10.5 0.5 352 1.5 352 24.994 0.0 0.00
2019-11-12 05:40 13.0 92.0 11.1 0.5 352 1.6 351 24.995 0.0 0.00
2019-11-12 05:35 11.9 92.8 10.2 1.1 351 2.5 352 24.995 0.0 0.00
2019-11-12 05:30 9.8 91.6 7.9 3.1 352 4.5 340 24.996 0.0 0.00
2019-11-12 05:25 8.8 89.4 6.3 3.2 340 3.8 348 24.996 0.0 0.00
2019-11-12 05:20 11.5 84.2 7.6 3.2 5 4.2 5 24.999 0.0 0.00
2019-11-12 05:15 12.1 92.6 10.3 0.3 323 2.1 322 24.999 0.0 0.00
2019-11-12 05:10 10.8 93.8 9.4 0.2 236 1.8 236 25.002 0.0 0.00
2019-11-12 05:05 10.5 93.0 8.9 0.5 290 1.1 290 25.006 0.0 0.00
2019-11-12 05:00 9.2 91.8 7.3 1.2 290 2.0 290 25.012 0.0 0.00
2019-11-12 04:55 8.9 90.4 6.6 2.2 290 4.6 296 25.015 0.0 0.00
2019-11-12 04:50 8.2 92.4 6.5 1.3 295 4.9 299 25.017 0.0 0.00
2019-11-12 04:45 6.3 89.2 3.8 0.5 168 1.7 168 25.020 0.0 0.00
2019-11-12 04:40 7.5 87.4 4.5 1.1 168 2.0 168 25.021 0.0 0.00
2019-11-12 04:35 8.1 88.4 5.3 1.9 105 3.5 25 25.023 0.0 0.00
2019-11-12 04:30 9.4 87.4 6.4 1.2 25 3.0 25 25.024 0.0 0.00
2019-11-12 04:25 10.2 91.8 8.3 0.7 171 1.6 171 25.021 0.0 0.00
2019-11-12 04:20 9.2 90.9 7.1 0.5 171 1.6 171 25.023 0.0 0.00
2019-11-12 04:15 9.3 90.9 7.2 1.2 170 3.4 170 25.032 0.0 0.00
2019-11-12 04:10 7.8 92.7 6.1 1.3 231 3.2 231 25.037 0.0 0.00
2019-11-12 04:05 7.2 88.6 4.6 1.2 231 3.2 231 25.040 0.0 0.00
2019-11-12 04:00 7.9 91.1 5.8 0.4 22 1.5 22 25.032 0.0 0.00
2019-11-12 03:55 7.9 90.0 5.5 1.5 22 2.1 22 25.032 0.0 0.00
2019-11-12 03:50 8.9 89.2 6.4 1.9 22 2.7 22 25.036 0.0 0.00
2019-11-12 03:45 9.4 91.5 7.4 1.4 357 3.1 357 25.048 0.0 0.00
2019-11-12 03:40 9.8 92.4 8.0 0.0 339 0.0 339 25.052 0.0 0.00
2019-11-12 03:35 8.9 92.5 7.1 0.6 339 1.5 340 25.056 0.0 0.00
CIRA

Cooperative Institute for Research in the Atmosphere

Musgrave, Kate

Kate Musgrave

Job Title:
Research Scientist/Scholar II
Phone Number:

970-491-8382

Fax Number:

970-491-8241

Mailing Addresss:
Kate Musgrave

Cooperative Institute for Research in the Atmosphere

Colorado State University

1375 Campus Delivery

Fort Collins, CO 80523-1375
Office Location:
CIRA Room 40
    Publications

    Further development of a statistical-dynamical ensemble for tropical cyclone intensity prediction

    Published Date: 2018
    Published By: Conference

    JHT Project 3: “Improvement and Implementation of the Probability-based Microwave Ring Rapid Intensification Index for NHC/JWTC Forecast Basins”

    Published Date: 2017
    Published By: Conference

    Improvements to the Tropical Cyclone Genesis Index (TCGI)

    Published Date: 2017
    Published By: Conference

    Is Tropical Cyclone Intensity Guidance Improving?

    Published Date: 2014
    Published By: American Meteorological Society
    The mean absolute error of the official tropical cyclone (TC) intensity forecasts from the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC) shows limited evidence of improvement over the past two decades. This result has sometimes erroneously been used to conclude that little or no progress has been made in the TC intensity guidance models. This article documents statistically significant improvements in operational TC intensity guidance over the past 24 years (1989–2012) in four tropical cyclone basins (Atlantic, eastern North Pacific, western North Pacific, and Southern Hemisphere). Errors from the best available model have decreased at 1%–2% yr−1 at 24–72 h, with faster improvement rates at 96 and 120 h. Although these rates are only about one-third to one-half of the rates of reduction of the track forecast models, most are statistically significant at the 95% level. These error reductions resulted from improvements in statistical–dynamical intensity models and consensus techniques that combine information from statistical–dynamical and dynamical models. The reason that the official NHC and JTWC intensity forecast errors have decreased slower than the guidance errors is because in the first half of the analyzed period, their subjective forecasts were more accurate than any of the available guidance. It is only in the last decade that the objective intensity guidance has become accurate enough to influence the NHC and JTWC forecast errors.