Christman Field Latest Observations
Date Time
MST
Temp
°F
RH
%
DewPt
°F
Wind
mph
Dir
°
Gust
mph
Dir
°
Press
in Hg
Solar
W/m^2
Prec
in
2019-09-16 14:30 89.2 12.1 30.1 5.1 150 8.7 149 24.728 725.2 0.00
2019-09-16 14:25 89.9 12.0 30.6 6.2 146 9.2 139 24.748 772.6 0.00
2019-09-16 14:20 89.8 12.1 30.6 7.0 122 11.3 134 24.740 770.1 0.00
2019-09-16 14:15 89.8 12.8 32.1 5.5 72 9.3 121 24.763 802.0 0.00
2019-09-16 14:10 90.7 12.3 31.7 7.0 109 11.9 118 24.757 857.0 0.00
2019-09-16 14:05 91.5 11.6 31.0 6.0 121 17.9 179 24.745 887.0 0.00
2019-09-16 14:00 89.5 11.8 29.8 2.4 176 6.1 230 24.738 905.0 0.00
2019-09-16 13:55 88.4 11.8 29.1 6.1 244 8.2 220 24.723 839.0 0.00
2019-09-16 13:50 87.9 12.5 30.1 6.8 264 10.4 233 24.750 679.2 0.00
2019-09-16 13:45 88.4 12.5 30.4 4.6 302 6.7 213 24.752 834.0 0.00
2019-09-16 13:40 88.1 12.5 30.1 4.7 241 8.3 191 24.760 847.0 0.00
2019-09-16 13:35 88.9 12.6 30.9 6.1 135 10.6 141 24.764 883.0 0.00
2019-09-16 13:30 88.8 12.6 30.9 5.5 235 9.6 202 24.766 906.0 0.00
2019-09-16 13:25 89.1 12.1 30.2 4.8 135 7.5 151 24.766 907.0 0.00
2019-09-16 13:20 87.3 12.7 29.9 3.4 151 8.1 136 24.767 790.1 0.00
2019-09-16 13:15 86.4 13.1 30.0 4.5 141 7.0 137 24.768 453.6 0.00
2019-09-16 13:10 85.9 14.2 31.5 3.4 144 7.7 116 24.769 385.8 0.00
2019-09-16 13:05 85.9 12.9 29.2 3.5 78 7.7 93 24.770 329.3 0.00
2019-09-16 13:00 86.2 13.4 30.5 5.3 93 8.7 125 24.771 325.0 0.00
2019-09-16 12:55 87.3 13.2 30.9 5.6 115 8.3 81 24.771 386.8 0.00
2019-09-16 12:50 88.0 12.9 30.8 4.9 82 7.3 82 24.773 818.0 0.00
2019-09-16 12:45 87.2 13.2 30.7 6.1 138 9.1 154 24.774 832.0 0.00
2019-09-16 12:40 86.2 13.6 30.8 6.2 92 10.0 142 24.775 556.3 0.00
2019-09-16 12:35 85.4 13.6 30.1 6.8 124 10.8 126 24.774 452.3 0.00
2019-09-16 12:30 85.4 14.5 31.7 7.3 141 12.1 133 24.773 431.1 0.00
2019-09-16 12:25 85.6 14.2 31.3 8.1 152 11.0 149 24.771 415.6 0.00
2019-09-16 12:20 85.7 13.1 29.3 5.8 119 9.6 127 24.771 494.2 0.00
2019-09-16 12:15 86.6 12.7 29.3 5.6 156 9.8 127 24.775 456.1 0.00
2019-09-16 12:10 87.6 12.9 30.6 7.2 131 10.6 130 24.776 888.0 0.00
2019-09-16 12:05 87.1 13.4 31.1 6.5 151 10.7 164 24.776 875.0 0.00
CIRA

Cooperative Institute for Research in the Atmosphere

Musgrave, Kate

Kate Musgrave

Job Title:
Research Scientist/Scholar II
Phone Number:

970-491-8382

Fax Number:

970-491-8241

Mailing Addresss:
Kate Musgrave

Cooperative Institute for Research in the Atmosphere

Colorado State University

1375 Campus Delivery

Fort Collins, CO 80523-1375
Office Location:
CIRA Room 40
    Publications

    Further development of a statistical-dynamical ensemble for tropical cyclone intensity prediction

    Published Date: 2018
    Published By: Conference

    JHT Project 3: “Improvement and Implementation of the Probability-based Microwave Ring Rapid Intensification Index for NHC/JWTC Forecast Basins”

    Published Date: 2017
    Published By: Conference

    Improvements to the Tropical Cyclone Genesis Index (TCGI)

    Published Date: 2017
    Published By: Conference

    Is Tropical Cyclone Intensity Guidance Improving?

    Published Date: 2014
    Published By: American Meteorological Society
    The mean absolute error of the official tropical cyclone (TC) intensity forecasts from the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC) shows limited evidence of improvement over the past two decades. This result has sometimes erroneously been used to conclude that little or no progress has been made in the TC intensity guidance models. This article documents statistically significant improvements in operational TC intensity guidance over the past 24 years (1989–2012) in four tropical cyclone basins (Atlantic, eastern North Pacific, western North Pacific, and Southern Hemisphere). Errors from the best available model have decreased at 1%–2% yr−1 at 24–72 h, with faster improvement rates at 96 and 120 h. Although these rates are only about one-third to one-half of the rates of reduction of the track forecast models, most are statistically significant at the 95% level. These error reductions resulted from improvements in statistical–dynamical intensity models and consensus techniques that combine information from statistical–dynamical and dynamical models. The reason that the official NHC and JTWC intensity forecast errors have decreased slower than the guidance errors is because in the first half of the analyzed period, their subjective forecasts were more accurate than any of the available guidance. It is only in the last decade that the objective intensity guidance has become accurate enough to influence the NHC and JTWC forecast errors.