Christman Field Latest Observations
Date Time
MST
Temp
°F
RH
%
DewPt
°F
Wind
mph
Dir
°
Gust
mph
Dir
°
Press
in Hg
Solar
W/m^2
Prec
in
2019-11-12 06:45 9.7 84.6 6.0 1.1 194 3.6 289 24.991 5.2 0.00
2019-11-12 06:40 10.9 90.4 8.6 2.9 141 4.3 144 24.992 3.4 0.00
2019-11-12 06:35 10.1 91.6 8.1 2.8 133 4.6 137 24.995 1.9 0.00
2019-11-12 06:30 10.3 90.3 8.0 3.2 114 4.2 133 24.996 0.8 0.00
2019-11-12 06:25 11.0 89.2 8.4 2.7 144 4.2 151 24.998 0.3 0.00
2019-11-12 06:20 11.0 91.4 9.0 4.6 151 6.0 173 24.995 0.0 0.00
2019-11-12 06:15 10.5 90.1 8.2 5.3 173 6.3 173 24.992 0.0 0.00
2019-11-12 06:10 10.7 91.2 8.6 5.2 164 6.5 161 24.993 0.0 0.00
2019-11-12 06:05 10.0 90.4 7.7 3.8 158 5.9 160 24.991 0.0 0.00
2019-11-12 06:00 9.8 88.6 7.2 0.7 166 3.2 166 24.991 0.0 0.00
2019-11-12 05:55 10.1 89.3 7.6 0.3 240 1.7 333 24.992 0.0 0.00
2019-11-12 05:50 11.6 86.3 8.3 0.7 352 2.1 352 24.993 0.0 0.00
2019-11-12 05:45 13.2 88.8 10.5 0.5 352 1.5 352 24.994 0.0 0.00
2019-11-12 05:40 13.0 92.0 11.1 0.5 352 1.6 351 24.995 0.0 0.00
2019-11-12 05:35 11.9 92.8 10.2 1.1 351 2.5 352 24.995 0.0 0.00
2019-11-12 05:30 9.8 91.6 7.9 3.1 352 4.5 340 24.996 0.0 0.00
2019-11-12 05:25 8.8 89.4 6.3 3.2 340 3.8 348 24.996 0.0 0.00
2019-11-12 05:20 11.5 84.2 7.6 3.2 5 4.2 5 24.999 0.0 0.00
2019-11-12 05:15 12.1 92.6 10.3 0.3 323 2.1 322 24.999 0.0 0.00
2019-11-12 05:10 10.8 93.8 9.4 0.2 236 1.8 236 25.002 0.0 0.00
2019-11-12 05:05 10.5 93.0 8.9 0.5 290 1.1 290 25.006 0.0 0.00
2019-11-12 05:00 9.2 91.8 7.3 1.2 290 2.0 290 25.012 0.0 0.00
2019-11-12 04:55 8.9 90.4 6.6 2.2 290 4.6 296 25.015 0.0 0.00
2019-11-12 04:50 8.2 92.4 6.5 1.3 295 4.9 299 25.017 0.0 0.00
2019-11-12 04:45 6.3 89.2 3.8 0.5 168 1.7 168 25.020 0.0 0.00
2019-11-12 04:40 7.5 87.4 4.5 1.1 168 2.0 168 25.021 0.0 0.00
2019-11-12 04:35 8.1 88.4 5.3 1.9 105 3.5 25 25.023 0.0 0.00
2019-11-12 04:30 9.4 87.4 6.4 1.2 25 3.0 25 25.024 0.0 0.00
2019-11-12 04:25 10.2 91.8 8.3 0.7 171 1.6 171 25.021 0.0 0.00
2019-11-12 04:20 9.2 90.9 7.1 0.5 171 1.6 171 25.023 0.0 0.00
CIRA

Cooperative Institute for Research in the Atmosphere

Robert DeMaria

Job Title:
Research Associate II
Phone Number:

970-491-8446

Fax Number:

970-491-8241

Mailing Addresss:
Robert DeMaria

Cooperative Institute for Research in the Atmosphere

Colorado State University

1375 Campus Delivery

Fort Collins, CO 80523-1375
Office Location:
CIRA Room 14
About Me:

Robert DeMaria received his BS in Computer Science from Colorado State University (2006). While a CSU student Robert worked as a student hourly at CIRA. During this time he was responsible for performing data processing jobs and miscellaneous programming support tasks. During the fall of 2006, he was the teaching assistant for the senior level computer graphics course at CSU. In 2007 he joined CIRA as a Research Associate I.

Past Work

Works

Thursday, March 13, 2014

Robert DeMaria is providing programming support for a wide variety of projects. Primary programming languages include Java, Python and IDL and FORTRAN. Projects include the Joint Hurricane Testbed where algorithms are being transitioned to operations at the National Hurricane Center (NHC) in Miami, research related to preparation for the next generation of geostationary environmental satellites and preparation of graphics for meteorological training and research publications. Recent accomplishments include performing code optimization that resulted in a 6x speed up of a new NHC hurricane wind probability product and assisting with the generation of a large database of simulated satellite imagery for the development of fire detection algorithms.

    Publications

    Proxy-visible Imagery

    Published Date: 2017
    Published By: Conference

    Proxy – Visible Imagery

    Published Date: 2017
    Published By: Conference

    Forecasting Tropical Cyclone Eye Formation and Dissipation in Infrared Imagery

    Published Date: 2017
    Published By: Weather and Forcasting

    Improved Tropical-Cyclone Flight-Level Wind Estimates Using Routine Infrared Satellite Reconnaissance

    Published Date: 2015
    Published By: Geoscientific Model Development

    A new and improved method for estimating tropical-cyclone (TC) flight-level winds using globally and routinely available TC information and infrared (IR) satellite imagery is presented. The developmental dataset is composed of aircraft reconnaissance (1995–2012) that has been analyzed to a 1 km × 10° polar grid that extends outward 165 km from the TC center. The additional use of an azimuthally average tangential wind at 500 km, based on global model analyses, allows the estimation of winds at larger radii. Analyses are rotated to a direction-relative framework, normalized by dividing the wind field by the observed maximum, and then decomposed into azimuthal wavenumbers in terms of amplitudes and phases. Using a single-field principal component method, the amplitudes and phases of the wind field are then statistically related to principal components of motion-relative IR images and factors related to the climatological radius of maximum winds. The IR principal components allow the wind field to be related to the radial and azimuthal variability of the wind field. Results show that this method, when provided with the storm location, the estimated TC intensity, the TC motion vector, and a single IR image, is able to estimate the azimuthal wavenumber 0 and 1 components of the wind field. The resulting wind field reconstruction significantly improves on the method currently used for satellite-based operational TC wind field estimates. This application has several potential uses that are discussed within.