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Motivation

Why should we consider going non-Gaussian?

In the atmosphere and ocean we have variables that 
are positive-definite. This means that they cannot 
obtain values less than or equal to zero.  

Positive semi-definite variables can obtain the value 
of zero but not less than.

We therefore need an error structure and data 
assimilation systems that cannot allow our analysis 
variables to take an unphysical value.
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Motivation

Quite often it is said that just because the physical field may 
show non-Gaussian behaviour this does not mean that the 
errors will be non-Gaussian!!

It is well know that if you have two independent Gaussian 
distributed random variables (RV) then if we define a new RV 
that is the difference between the two Gaussian RVs then this is 
also a Gaussian RV. 

However, we cannot say that if we assume that our error is 
Gaussian then our true state and background are also Gaussian 
distributed. – Well that is not quite true.

We shall now introduce moment generating functions which 
are important in “going back in the other direction”
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Motivation

Moment Generating Functions (MGF):
The definition for the moments of a PDF is given by

𝐸𝐸 𝑥𝑥 = �
𝑎𝑎

𝑏𝑏

𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑

The Moment Generating Function is defined by

𝑚𝑚𝑥𝑥 𝑡𝑡 = 𝐸𝐸 exp 𝑡𝑡𝑡𝑡 ≡ �
𝑎𝑎

𝑏𝑏

exp 𝑡𝑡𝑡𝑡 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

Where a and b are the lower and upper bounds of where the 
pdf is valid.

We now consider two very important properties of 
MGFs, 
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Motivation

Let c and d be constants, and let 𝑀𝑀𝑋𝑋 𝑡𝑡 be the moment 
generating function for the random variable 𝑋𝑋, then the MGF 
for the random variable 𝑌𝑌 = 𝑐𝑐 + 𝑑𝑑𝑑𝑑 is 

𝑀𝑀𝑌𝑌 𝑡𝑡 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑀𝑀𝑋𝑋 𝑑𝑑𝑑𝑑

Let 𝑋𝑋 and 𝑌𝑌 be independent random variables with MGFs 
𝑀𝑀𝑋𝑋 𝑡𝑡 and 𝑀𝑀𝑌𝑌 𝑡𝑡 then if we define a new random variable 𝑍𝑍 =
𝑋𝑋 + 𝑌𝑌 then the MGF of 𝑍𝑍 is given by

𝑀𝑀𝑍𝑍 𝑡𝑡 = 𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡 = 𝐸𝐸 𝑒𝑒𝑡𝑡 𝑋𝑋+𝑌𝑌 ≡ 𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡 𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡 ≡ 𝑀𝑀𝑋𝑋 𝑡𝑡 𝑀𝑀𝑌𝑌 𝑡𝑡

Therefore, the MGF of the sum (and subtraction through using 
the first property on the last page) of two random variables is 
the product of the MGF of the two random variables.
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Motivation

Given the properties of moment generating functions 
we now introduce the Uniqueness Theorem which is 
vital to understand why if we detect a non-Gaussian 
signal in one of our fields then it is quite difficult for our 
errors to be Gaussian.

Uniqueness Theorem: Suppose that the two random 
variables 𝑋𝑋 and 𝑌𝑌 have the moment generating functions 
given by 𝑀𝑀𝑋𝑋 𝑡𝑡 and 𝑀𝑀𝑌𝑌 𝑡𝑡 respectively.  If 𝑀𝑀𝑋𝑋 𝑡𝑡 =
𝑀𝑀𝑌𝑌 𝑡𝑡 for all values of 𝑡𝑡, then 𝑋𝑋 and 𝑌𝑌 have the same 
distribution.
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Motivation

So what does the uniqueness theorem mean to us in data
assimilation? We start with defining the MGF for a Gaussian
distribution:

𝑀𝑀𝐺𝐺 𝑡𝑡 = exp 𝜇𝜇𝜇𝜇 +
𝜎𝜎2𝑡𝑡2

2 .

If we assume that our errors are Gaussian distributed then they
have a moment generating function as describe above.
If we have an error structure defined as 𝜀𝜀𝑏𝑏 ≡ 𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑏𝑏 then we
require both sides to have Gaussian MGFs so that the
properties of MGF earlier hold but also then the uniqueness
theorem holds.

We assume that our errors are unbiased which for the
Gaussian distribution means 𝜇𝜇𝜀𝜀𝑏𝑏 = 0.
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Motivation

And we are assuming that we have detected a Gaussian signal for the background
field which is distributed 𝑥𝑥𝑏𝑏 ∼ 𝐺𝐺 𝜇𝜇𝑏𝑏,𝜎𝜎𝑏𝑏2 and has an associated moment
generating function, as does the errors. Therefore, by the uniqueness theorem we
require both sides of the equation below to be equal

exp 0𝑡𝑡 +
𝜎𝜎2𝑡𝑡2

2
= 𝑀𝑀𝑥𝑥𝑡𝑡 𝑡𝑡 exp −𝜇𝜇𝑏𝑏𝑡𝑡 +

𝜎𝜎𝑏𝑏2𝑡𝑡2

2
Therefore, the question is can 𝑀𝑀𝑥𝑥𝑡𝑡 𝑡𝑡 be anything other than a Gaussian MGF?
Unfortunately yes it can. There are two possible answers for 𝑀𝑀𝑥𝑥𝑡𝑡 𝑡𝑡 so that the
uniqueness theorem holds for the expression above:

𝑀𝑀𝑥𝑥𝑡𝑡 𝑡𝑡 = exp 𝜇𝜇𝑏𝑏𝑡𝑡 +
𝜎𝜎𝑡𝑡2𝑡𝑡2

2
𝑜𝑜𝑜𝑜 𝑀𝑀𝑥𝑥𝑡𝑡 𝑡𝑡 = exp 𝜇𝜇𝑏𝑏𝑡𝑡

Where 𝜎𝜎2 = 𝜎𝜎𝑡𝑡2 + 𝜎𝜎𝑏𝑏2 or 𝜎𝜎2 = 𝜎𝜎𝑏𝑏2. What this is saying is that if a Gaussian
distribution is detected for the background field and we have assumed Gaussian
errors then the true state can only be Gaussian distributed or it can be a
constant!!
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Motivation

Therefore, if we detect a lognormal signal for our
background field and we assume Gaussian errors then
the only way the uniqueness theorem can hold is if the
true state is a Gaussian minus a lognormal!

This raises the bigger question: Why is your background
distribution not at least the distribution type for the
true field?

Another problem that arises when considering
lognormal distributions is that there does not exist a
MGF for this distribution. The reason being is that
there exists another distribution which has the same
moments as the lognormal distribution to infinity!
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Evidence for Non-Gaussian Behaviour

Question 1

Synoptic scale: Are all the synoptic variables Gaussian?  NO

Humidity: To assimilate this variable we have to use the  logarithm of 
the variable (Polavarapu et al 2005). This indicates that this variable is 
LOGNORMAL, also evidence in Kliewer et al. (2016)

Wind component:  Combined with the moisture flux then this 
variable is showing sign that the wind components may be 
LOGNORMAL (Raymond 1997).  In Kliewer et al (2016) there is 
evidence that wind speed is non-Gaussian but not necessarily 
lognormal.

Comment: These variables are either positive definite or semi positive 
definite!!
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Evidence for Non-Gaussian Behaviour

Question 1

Meso-scale:Are all meso-scale variables Gaussian? NO

In the paper by Miles et al. (2000) there is a large summary 
of cloud variables that are not Gaussian, specifically 
LOGNORMAL and GAMMA.  As early as the 1970s rain 
and cloud variables had been identified as LOGNORMAL, 
Mielke et al. (1977)

8/2/2018 JCSDA 2018 Colloquium on Satellite DA 12



Evidence for Non-Gaussian Behaviour

Question 2

Are all observations Gaussian? NO

Direct Observations: The variables which we have 
already mentioned are not Gaussian and therefore a 
direct observation of them is also not Gaussian.

Retrievals: By having to take the logarithm of the 
humidity to apply 1D Variational data assimilation 
(1D VAR), the retrieved field is not Gaussian. It is 
lognormal.
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Evidence for Non-Gaussian Behaviour

Question 2

Optical Depth: In Stephens et al. (2002) the pdf of this 
variable is presented and is clearly showing a lognormal
structure.

Infra-Red Flux Differences: From the same paper. 

Cloud base height: In Sengupta et al. (2004) these 
observations shows signs of a lognormal structure.

Liquid water path: Same paper, shows a sharp positive 
skewness associated with a lognormal distribution with 
large variance.
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Evidence for Non-Gaussian Behaviour

Visual example
This data is column water vapour climatologies from the
Oklahoma ARM-SGP site from 1997 – 2000 where the
data are observed for days with boundary level clouds.

The data has been broken down by season as well as for 
the whole year.  The data was collected from a microwave 
radiometer.
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Evidence for Non-Gaussian Behaviour
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Winter months

Summer months

Lognormal 
fits best
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Distributions and Descriptive Statistics

We shall only be considering the continuous 
probability distributions for this lecture.  The 
three descriptive statistics for continuous 
distributions are defined as 

The mean, which is also the first moment of 
the distribution, is also referred to as the 
minimum variance estimator and is given by

𝜇𝜇 = 𝐸𝐸 𝑥𝑥 = �
𝑎𝑎

𝑏𝑏

𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑 , 𝑥𝑥 ∈ 𝑎𝑎, 𝑏𝑏
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Distributions and Descriptive Statistics

The next statistic is the median.  This is the 
unbiased estimator.  For continuous distributions 
the median is the value of 𝑥𝑥 such that 

�
𝑎𝑎

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓 𝑧𝑧 𝑑𝑑𝑑𝑑 =
1
2

.

The third and final descriptive statistic is the mode.
This is the maximum likelihood estimator and is 
defined by

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑥𝑥=𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

= 0.
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Distributions and Descriptive Statistics

Question: How do the three statistic operators 
transfer to multivariate theory?   Not very well!!!
Mean:

𝝁𝝁 = 𝐸𝐸 𝒙𝒙 = �
𝒂𝒂

𝒃𝒃

�
𝒄𝒄

𝒅𝒅

⋯�
𝒆𝒆

𝒇𝒇

𝒙𝒙𝑓𝑓 𝒙𝒙 𝑑𝑑𝒙𝒙,

However, this expression is not defined in 
mathematics, so for the multivariate situation we 
actually have the vector of means

𝜇𝜇𝑖𝑖 = �
𝑎𝑎𝑖𝑖

𝑏𝑏𝑖𝑖

𝑥𝑥𝑖𝑖𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑁𝑁
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Distributions and Descriptive Statistics

Multivariate Medians
This is the worst of the three statistics.  Although it is 
unbiased it is also non-unique, even for the 
multivariate Gaussian distribution.  The multivariate 
definition is 

𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 =

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �
𝑎𝑎1

𝑥𝑥1

�
𝑎𝑎2

𝑥𝑥2

⋯ �
𝑎𝑎𝑛𝑛

𝑥𝑥𝑛𝑛

𝑓𝑓 𝒙𝒙 𝑑𝑑𝒙𝒙 =
1
2

.
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Distributions and Descriptive Statistics

Is all hope lost? No

Our saviour is the mode!

There is a simple multivariate extension of the 
definition of the mode from the univariate 
case to the multivariate.

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝒙𝒙 𝒙𝒙=𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎

= 𝟎𝟎

Another advantage of the mode for a uni-
modal distribution is that it is unique!
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Distributions and Descriptive Statistics

We now start to consider a non-Gaussian distribution.  The first is the 
lognormal on its own.  The univariate lognormal distribution is defined 
as

𝐿𝐿𝐿𝐿 𝜇𝜇𝐿𝐿 ,𝜎𝜎𝐿𝐿2 ≡
1
2𝜋𝜋𝜎𝜎

1
𝑥𝑥 exp −

1
2

ln 𝑥𝑥 − 𝜇𝜇𝐿𝐿 ^2
𝜎𝜎𝐿𝐿2

where 𝑥𝑥 ∈ 0,∞ , and 𝜇𝜇𝐿𝐿 ≡ 𝐸𝐸 ln 𝑥𝑥 and 𝜎𝜎𝐿𝐿2 ≡ 𝐸𝐸 ln 𝑥𝑥 − 𝐸𝐸 ln 𝑥𝑥 2 .  
It can easily be shown that the mode, median and mean are

𝑥𝑥𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = exp 𝜇𝜇𝐿𝐿 − 𝜎𝜎𝐿𝐿2

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = exp 𝜇𝜇𝐿𝐿

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = exp 𝜇𝜇𝐿𝐿 +
𝜎𝜎𝐿𝐿2

2
As we can see the mode is the only statistic that is degenerate with
respect to the variance. It is because of this property that the
lognormal variational approach was adapted for non-Gaussian pdfs.
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Distributions and Descriptive Statistics

The multivariate lognormal distribution is defined as

𝑀𝑀𝑀𝑀𝑀𝑀 𝝁𝝁𝑙𝑙 ,𝜮𝜮𝑙𝑙 ≡
1

𝜮𝜮𝑙𝑙
1
2 2𝜋𝜋

𝑛𝑛
2

�
𝑖𝑖=1

𝑛𝑛
1
𝑥𝑥𝑖𝑖

exp −
1
2

ln𝒙𝒙 − 𝝁𝝁𝒍𝒍 𝑻𝑻𝚺𝚺𝑙𝑙−1 ln𝒙𝒙 − 𝝁𝝁𝒍𝒍 ,

Where the multivariate lognormal mode and median are 
defined as

𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = exp 𝝁𝝁𝑳𝑳 − 𝚺𝚺𝑳𝑳,𝟏𝟏
𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = exp 𝝁𝝁𝑳𝑳

An important property of the lognormal distribution is that if 
𝒙𝒙 ∼ 𝑴𝑴𝑴𝑴𝑴𝑴 ⇒ ln𝒙𝒙 ∼ 𝑴𝑴𝑴𝑴. This transform has been used and 
is still currently used in some DA systems, however, it has a 
problem.  The mode that is found in Gaussian transformed 
spaces can only invert back to the median in lognormal space.
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All skewness information is lost
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Full Field Non-Gaussian Variational Data Assimilation

The starting point for lognormal based data assimilation 
is the definition of the errors.  This was first proposed 
in Cohn (1997) where, due to the geometric behaviour
of the lognormal distribution the errors could not be 
defined as the difference between two variables.

NOTE: there is no known distribution of the difference 
between two lognormal random variables.  It is known 
NOT to be a Gaussian distribution or a lognormal 
distribution.
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NOTE: DIFFERNCE 
IS NOT

A GAUSSIAN

ASSUMED 
GAUSSIAN 
APPROACH
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Full Field Non-Gaussian Variational Data Assimilation

The basis for data assimilation is the definition of the
errors. As the lognormal distribution is geometric, the
additive property from Gaussian distribution theory
does not hold. However, there is a geometric property
that the ratio, and product, of two independent
lognormally distributed random variables is also a
lognormally distributed random variable.
Therefore we can define the background and 
observational errors geometrically as

𝜀𝜀𝑏𝑏𝑖𝑖 ≡
𝑥𝑥𝑖𝑖𝑡𝑡

𝑥𝑥𝑖𝑖𝑏𝑏
, 𝑖𝑖 = 1,2, … ,𝑁𝑁,

𝜀𝜀𝑗𝑗𝑜𝑜 ≡
𝑦𝑦𝑗𝑗

ℎ𝑗𝑗 𝒙𝒙
, 𝑗𝑗 = 1,2, … ,𝑁𝑁𝑜𝑜

Fletcher, S. J. and M. Zupanski, 2006a:  A data assimilation method for lognormally distributed observational errors. Q. J. Roy. Meteorol. Soc., 132, 2505—2519.
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Full Field Non-Gaussian Variational Data Assimilation

The basis of 3D variational data assimilation  (VAR DA) is Bayes 
theorem which is given by

𝑃𝑃 |𝐴𝐴 𝐵𝐵 ∝ 𝑃𝑃 |𝐵𝐵 𝐴𝐴 𝑃𝑃 𝐴𝐴
Where the events 𝐴𝐴 is that 𝒙𝒙𝑏𝑏 = 𝒙𝒙𝒕𝒕 and the event is that 𝒚𝒚𝒐𝒐 = 𝒚𝒚𝒕𝒕 and 
that combined into the conditional pdf above results in

𝑃𝑃 |𝒙𝒙𝒃𝒃 = 𝒙𝒙𝒕𝒕 𝒚𝒚𝒐𝒐 = 𝒚𝒚𝒕𝒕 ∝ 𝑃𝑃 |𝒚𝒚𝒐𝒐 = 𝒚𝒚𝒕𝒕 𝒙𝒙𝒃𝒃 = 𝒙𝒙𝒕𝒕 𝑃𝑃 𝒙𝒙𝒃𝒃 = 𝒙𝒙𝒕𝒕
The next step is to form the maximum likelihood estimate by taking 
the negative logarithm of the expression above. 

To find the cost function to minimize we have to substitute 
the definition of a multivariate lognormal probability density function 
along with the error definitions on the slide before which results in 
𝐽𝐽𝐿𝐿 𝒙𝒙

=
1
2

ln𝒙𝒙𝒕𝒕 − ln𝒙𝒙𝒃𝒃 𝑇𝑇𝑩𝑩𝑳𝑳−𝟏𝟏 ln𝒙𝒙𝒕𝒕 − ln𝒙𝒙𝒃𝒃 + ln𝒙𝒙𝒕𝒕 − ln𝒙𝒙𝒃𝒃 ,𝟏𝟏𝑵𝑵

+
1
2

ln𝒚𝒚 − ln𝒉𝒉 𝒙𝒙 𝑇𝑇𝑹𝑹𝑳𝑳−𝟏𝟏 ln𝒚𝒚 − ln𝒉𝒉 𝒙𝒙 + ln𝒚𝒚 − ln𝒉𝒉 𝒙𝒙 ,𝟏𝟏𝑵𝑵𝒐𝒐 .
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Full Field Non-Gaussian Variational Data Assimilation

However, we do not live in a one distribution fits all, and it is well known that 
there are many synoptic fields that are Gaussian distributed.   In Fletcher and 
Zupanski (2006b) a new mixed Gaussian-lognormal distribution is proposed and 
proved.
We first consider the bivariate mixed distribution where we have one Gaussian 
distributed random variable and one lognormally distributed random variable.  
Therefore, the bivariate mixed distribution is given by

𝑀𝑀𝑀𝑀 𝝁𝝁,𝚺𝚺𝐦𝐦𝐦𝐦

≡
1

𝚺𝚺𝒎𝒎𝒎𝒎
1
22𝜋𝜋

1
𝑥𝑥2

exp �−
1
2
�
𝑥𝑥1 − 𝜇𝜇1 2

𝜎𝜎12
− 𝜌𝜌

𝑥𝑥1 − 𝜇𝜇1
𝜎𝜎1

ln 𝑥𝑥2 − 𝜇𝜇2
𝜎𝜎2
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Mixed Gaussian-Lognormal distribution

The mixed distribution in its bivariate formulation is defined by
𝑀𝑀𝑀𝑀 𝜇𝜇𝐺𝐺 , 𝜇𝜇𝐿𝐿 ,𝜎𝜎𝐺𝐺 ,𝜎𝜎𝐿𝐿 ,𝜌𝜌𝑚𝑚𝑚𝑚

≡
1

𝚺𝚺𝑚𝑚𝑚𝑚 2𝜋𝜋𝑥𝑥2
exp −

1
2

𝑥𝑥1 − 𝜇𝜇𝐺𝐺
ln 𝑥𝑥2 − 𝜇𝜇𝐿𝐿

𝑇𝑇
𝚺𝚺mx−1

𝑥𝑥1 − 𝜇𝜇𝐺𝐺
ln 𝑥𝑥2 − 𝜇𝜇𝐿𝐿

Where

𝚺𝚺𝑚𝑚𝑚𝑚 = 𝑉𝑉𝐴𝐴𝐴𝐴 𝑋𝑋1 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋1, ln𝑋𝑋2
𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋1, ln𝑋𝑋2 𝑉𝑉𝑉𝑉𝑉𝑉 ln𝑋𝑋2

Note that the variance of the lognormal component is with
respect to ln𝑋𝑋2, and that the covariance between the Gaussian
and the lognormal random variables is between 𝑋𝑋1and ln𝑋𝑋2 .
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Properties of the Mixed Distribution

An important property of the mixed distribution is the definitions of the
three descriptive statistics. The mean for each component can be found
through forming the marginal and joint pdfs which can be shown to be
Gaussian and lognormal, or vice-versa (Fletcher, 2017). Therefore the
mean, mode and median are given by

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≡
𝜇𝜇𝐺𝐺

exp 𝜇𝜇𝐿𝐿 +
𝜎𝜎𝐿𝐿2

2
, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≡

𝜇𝜇𝐺𝐺
exp 𝜇𝜇𝐿𝐿

,

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≡
𝜇𝜇𝐺𝐺 − 𝜌𝜌𝜎𝜎𝐺𝐺𝜎𝜎𝐿𝐿
exp𝜇𝜇𝐿𝐿 − 𝜎𝜎𝐿𝐿2
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Plots of the Mixed Distribution
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Plots of the Mixed Distribution
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Applying the Mixed Distribution to VAR

To be able to apply the mixed distribution to a 
variational formulation we require the definitions for 
the errors along with the multivariate version of the 
mixed distribution.  The background and 
observational errors are given by 

𝜺𝜺𝒃𝒃 ≡
𝒙𝒙𝒑𝒑𝟏𝟏
𝒕𝒕 − 𝒙𝒙𝒑𝒑𝟏𝟏

𝒃𝒃

𝒙𝒙𝒒𝒒𝟏𝟏
𝒕𝒕

𝒙𝒙𝒒𝒒𝟏𝟏
𝒃𝒃

, 𝜺𝜺𝒐𝒐 ≡
𝒚𝒚𝒑𝒑𝟐𝟐 − 𝒉𝒉𝒑𝒑𝟐𝟐 𝒙𝒙

𝒚𝒚𝒒𝒒𝟐𝟐
𝒉𝒉𝒒𝒒𝟐𝟐 𝒙𝒙

Where there are different number of Gaussian and
observational background and observational errors,
and that 𝑁𝑁 = 𝑝𝑝1 + 𝑞𝑞1 and 𝑁𝑁𝑜𝑜 = 𝑝𝑝2 + 𝑞𝑞2.
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Full Field Non-Gaussian Variational Data Assimilation

We have just seen from the figures on the previous slides that the 
mixed distribution appears to keep properties from both distributions, 
the symmetry about the mode but yet also the ability to have outliers 
assign probabilities that a Gaussian would miss.

The multivariate version of the mixed distribution starts with 
assuming that there are 𝑝𝑝 Gaussian random variables and 𝑞𝑞 lognormal 
random variables such that 𝑁𝑁 = 𝑝𝑝 + 𝑞𝑞.  Therefore, the definition of 
the mixed distribution is

𝑀𝑀𝑀𝑀𝑀𝑀 𝝁𝝁𝒎𝒎𝒎𝒎,𝚺𝚺𝒎𝒎𝒎𝒎

≡
𝟏𝟏

𝚺𝚺𝒎𝒎𝒎𝒎
𝟏𝟏
𝟐𝟐 2𝜋𝜋

𝑁𝑁
2

�
𝑖𝑖=𝑝𝑝+1

𝑁𝑁
1
𝑥𝑥𝑖𝑖

exp −
1
2

𝒙𝒙𝒑𝒑 − 𝝁𝝁𝒑𝒑
ln𝒙𝒙𝒒𝒒 − 𝝁𝝁𝒒𝒒

𝑻𝑻
𝚺𝚺𝒎𝒎𝒎𝒎−𝟏𝟏

𝒙𝒙𝒑𝒑 − 𝝁𝝁𝒑𝒑
ln𝒙𝒙𝒒𝒒 − 𝝁𝝁𝒒𝒒
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Full Field Non-Gaussian Variational Data Assimilation

Given the definition for the multivariate mixed 
Gaussian-lognormal distribution we now consider the 
extension to the error definitions that would be needed 
to apply this distribution towards a 3D VAR format. 

The definitions for mixed background and mixed 
observation errors where there are 𝑝𝑝1Gaussian 
background errors, 𝑞𝑞1lognormal background errors, 
𝑝𝑝2Gaussian observational errors, and 𝑞𝑞2lognormal 
observational errors, are

𝜺𝜺𝒃𝒃 ≡
𝒙𝒙𝒑𝒑𝟏𝟏
𝒕𝒕 − 𝒙𝒙𝒑𝒑𝟏𝟏

𝒃𝒃

𝒙𝒙𝒒𝒒𝟏𝟏
𝒕𝒕

𝒙𝒙𝒒𝒒𝟏𝟏
𝒃𝒃

, 𝜺𝜺𝒐𝒐 ≡
𝒚𝒚𝒑𝒑𝟐𝟐 − 𝒉𝒉𝒑𝒑𝟐𝟐 𝒙𝒙

𝒚𝒚𝒒𝒒𝟐𝟐
𝒉𝒉𝒒𝒒𝟐𝟐 𝒙𝒙
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Full Field Non-Gaussian Variational Data Assimilation
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Therefore, following the maximum likelihood route that the 
Gaussian and the lognormal based costs functions were 
derived from results in the mixed distribution based 3D VAR 
cost function being

𝐽𝐽𝑚𝑚𝑚𝑚 𝒙𝒙

=
1
2

𝒙𝒙𝒑𝒑𝟏𝟏
𝒕𝒕 − 𝒙𝒙𝒑𝒑𝟏𝟏

𝒃𝒃

ln𝒙𝒙𝒒𝒒𝟏𝟏
𝒕𝒕 − ln𝒙𝒙𝒒𝒒𝟏𝟏

𝒃𝒃

𝑻𝑻

𝑩𝑩𝒎𝒎𝒎𝒎
−𝟏𝟏 𝒙𝒙𝒑𝒑𝟏𝟏

𝒕𝒕 − 𝒙𝒙𝒑𝒑𝟏𝟏
𝒃𝒃

ln𝒙𝒙𝒒𝒒𝟏𝟏
𝒕𝒕 − ln𝒙𝒙𝒒𝒒𝟏𝟏

𝒃𝒃

+
𝒙𝒙𝒑𝒑𝟏𝟏
𝒕𝒕 − 𝒙𝒙𝒑𝒑𝟏𝟏

𝒃𝒃

ln𝒙𝒙𝒒𝒒𝟏𝟏
𝒕𝒕 − ln𝒙𝒙𝒒𝒒𝟏𝟏

𝒃𝒃 ,
𝟎𝟎𝒑𝒑𝟏𝟏
𝟏𝟏𝒒𝒒𝟏𝟏

+
1
2

𝒚𝒚𝒑𝒑𝟐𝟐 − 𝒉𝒉𝒑𝒑𝟐𝟐 𝒙𝒙
ln𝒚𝒚𝒒𝒒𝟐𝟐 − ln𝒉𝒉𝒒𝒒𝟐𝟐 𝒙𝒙

𝑹𝑹𝒎𝒎𝒎𝒎−𝟏𝟏
𝒚𝒚𝒑𝒑𝟐𝟐 − 𝒉𝒉𝒑𝒑𝟐𝟐 𝒙𝒙

ln𝒚𝒚𝒒𝒒𝟐𝟐 − ln𝒉𝒉𝒒𝒒𝟐𝟐 𝒙𝒙

+
𝒚𝒚𝒑𝒑𝟐𝟐 − 𝒉𝒉𝒑𝒑𝟐𝟐 𝒙𝒙

ln𝒚𝒚𝒒𝒒𝟐𝟐 − ln𝒉𝒉𝒒𝒒𝟐𝟐 𝒙𝒙
,
𝟎𝟎𝒑𝒑𝟐𝟐
𝟏𝟏𝒒𝒒𝟐𝟐



Full Field Non-Gaussian Variational Data Assimilation

Originally 4D VAR was derived from a variational prospective where a 
predetermined weighted least squares functional was defined to be 
minimised that had a Gaussian formulation to it.  

In Fletcher (2010) this approach was extended to define a 
functional who’s solution was the mode of a multivariate lognormal 
and then a mixed Gaussian-lognormal distribution.  However, a more 
general probability model was sought so that in the future we could 
substitute any PDF into this Bayesian expression to obtain the cost 
function for the maximum likelihood estimator.

We start with what is referred to as the multi-event version 
of Bayes Theorem

𝑃𝑃 |𝒙𝒙𝟎𝟎 𝒙𝒙𝑵𝑵,𝒙𝒙𝑵𝑵−𝟏𝟏, … ,𝒙𝒙𝟏𝟏,𝒚𝒚𝒏𝒏𝒐𝒐 ,𝒚𝒚𝒏𝒏𝒐𝒐−𝟏𝟏, … ,𝒚𝒚𝟏𝟏
∝ 𝑃𝑃 𝒙𝒙𝟎𝟎 𝑃𝑃 𝒙𝒙𝟏𝟏�𝒙𝒙𝟎𝟎 𝑃𝑃 𝒚𝒚𝟏𝟏�𝒙𝒙𝟐𝟐,𝒙𝒙𝟏𝟏,𝒙𝒙𝟎𝟎 𝑃𝑃 𝒙𝒙𝟐𝟐 𝒙𝒙𝟏𝟏,𝒙𝒙𝟎𝟎 ⋯
𝑃𝑃 𝒙𝒙𝑵𝑵 𝒙𝒙𝑵𝑵−𝟏𝟏 ,𝒙𝒙𝑵𝑵−𝟐𝟐, … ,𝒚𝒚𝒑𝒑,𝒙𝒙𝒌𝒌, … ,𝒚𝒚𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟏𝟏,𝒙𝒙𝟎𝟎

Whilst this expression looks terrifying to evaluate we are able to 
simplify through some assumptions that are made in DA.

8/2/2018 JCSDA 2018 Colloquium on Satellite DA 43



Full Field Non-Gaussian Variational Data Assimilation

Assumptions:
1. That the observation error is only 

dependent on the model state at that time.
2. That the model error is only dependent on 

the previous model evaluation – a one step 
Markov chain.

3. Model states are not dependent on 
observations.

4. Perfect model implies that if the initial 
conditions are true then all future states 
are also true.
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Full Field Non-Gaussian Variational Data Assimilation

Therefore, we now have two probability models – one for the perfect 
model (strong constraint) and one for the imperfect model (weak 
constraint) that are not dependent on any distribution choice.
Strong Constraint:

𝑃𝑃 𝑿𝑿𝟎𝟎 �𝑿𝑿𝑵𝑵 ∝ 𝑃𝑃 𝑿𝑿𝟎𝟎 �
𝒊𝒊=𝟏𝟏

𝑵𝑵𝒐𝒐

𝑃𝑃 𝒀𝒀𝒊𝒊 𝑿𝑿𝒌𝒌

Where �𝑿𝑿𝑵𝑵 ≡ 𝑿𝑿𝑵𝑵−𝟏𝟏, … ,𝒀𝒀𝒑𝒑𝑿𝑿𝒌𝒌, … ,𝒀𝒀𝟏𝟏,𝑿𝑿𝟏𝟏,𝑿𝑿𝟎𝟎 and 𝑘𝑘 is the equivalent 
time index of the ith observation.
Weak Constraint:

𝑃𝑃 𝑿𝑿𝟎𝟎 �𝑿𝑿𝑵𝑵 ∝ 𝑃𝑃 𝑿𝑿𝟎𝟎 �
𝒊𝒊=𝟏𝟏

𝑵𝑵𝒐𝒐

𝑃𝑃 𝒀𝒀𝒊𝒊 𝑿𝑿𝒌𝒌 �
𝒋𝒋=𝟏𝟏

𝑵𝑵

𝑃𝑃 𝑿𝑿𝒋𝒋 𝑿𝑿𝒋𝒋−𝟏𝟏

To obtain the cost function we must take the negative logarithm of 
these two expressions.  Therefore, the generalised cost functions for 
strong and weak constraint 4D VAR are:
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Strong Constraint:

𝐽𝐽 𝑿𝑿𝟎𝟎 = − ln𝑃𝑃 𝑿𝑿𝟎𝟎 −�
𝑖𝑖=1

𝑁𝑁𝑜𝑜

ln𝑃𝑃 𝒀𝒀𝒊𝒊 𝑿𝑿𝒌𝒌

Weak Constraint:

𝐽𝐽 𝑿𝑿𝟎𝟎 = − ln𝑃𝑃 𝑿𝑿𝟎𝟎 −�
𝑖𝑖=1

𝑁𝑁𝑜𝑜

ln𝑃𝑃 𝒀𝒀𝒊𝒊 𝑿𝑿𝒌𝒌 −�
𝑗𝑗−1

𝑁𝑁

ln𝑃𝑃 𝑿𝑿𝒋𝒋 𝑿𝑿𝒋𝒋−𝟏𝟏

Full Field Non-Gaussian Variational Data Assimilation
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Full Field Non-Gaussian Variational Data Assimilation

The resulting 3DVAR and 4DVAR cost functions are

𝐽𝐽 𝒙𝒙 =
𝟏𝟏
𝟐𝟐
𝜺𝜺𝒃𝒃𝑻𝑻𝑩𝑩−𝟏𝟏𝜺𝜺𝒃𝒃 + 𝜺𝜺𝒃𝒃𝑻𝑻

𝟎𝟎𝒃𝒃𝒑𝒑
𝟏𝟏𝒃𝒃𝒃𝒃

+
𝟏𝟏
𝟐𝟐
𝜺𝜺𝒐𝒐𝑻𝑻𝑹𝑹−𝟏𝟏𝜺𝜺𝒐𝒐 + 𝜺𝜺𝒐𝒐𝑻𝑻

𝟎𝟎𝒐𝒐𝒑𝒑
𝟏𝟏𝒐𝒐𝒐𝒐

(Fletcher and Zupanski, 2007), where

𝜺𝜺𝒃𝒃 =
𝒙𝒙𝒑𝒑𝒕𝒕 − 𝒙𝒙𝒃𝒃𝒑𝒑

ln 𝒙𝒙𝒒𝒒𝒕𝒕 − ln 𝒙𝒙𝒃𝒃𝒃𝒃
𝒂𝒂𝒂𝒂𝒂𝒂 𝜺𝜺𝒐𝒐 =

𝒚𝒚𝒐𝒐𝒑𝒑 − 𝒉𝒉𝒐𝒐𝒑𝒑 𝒙𝒙
ln 𝒚𝒚𝒐𝒐𝒐𝒐 − ln 𝒉𝒉𝒐𝒐𝒐𝒐 𝒙𝒙

and

𝑱𝑱 𝒙𝒙𝟎𝟎 =
𝟏𝟏
𝟐𝟐𝜺𝜺𝟎𝟎𝟎𝟎

𝑻𝑻 𝑩𝑩−𝟏𝟏𝜺𝜺𝟎𝟎𝟎𝟎 + 𝜺𝜺𝟎𝟎𝟎𝟎𝑻𝑻
𝟎𝟎𝒃𝒃𝒑𝒑
𝟏𝟏𝒃𝒃𝒃𝒃

+
𝟏𝟏
𝟐𝟐�
𝒊𝒊=𝟏𝟏

𝑵𝑵𝒐𝒐

𝜺𝜺𝟎𝟎𝟎𝟎𝑻𝑻 𝑹𝑹𝒊𝒊−𝟏𝟏𝜺𝜺𝒐𝒐𝒐𝒐 + �
𝒊𝒊=𝟏𝟏

𝑵𝑵𝒐𝒐

𝜺𝜺𝒐𝒐𝒐𝒐𝑻𝑻
𝟎𝟎𝒐𝒐𝒑𝒑𝒑𝒑
𝟏𝟏𝒐𝒐𝒐𝒐𝒐𝒐

(Fletcher, 2010) again where

𝜺𝜺𝟎𝟎𝟎𝟎 =
𝒙𝒙𝒑𝒑𝒕𝒕 𝒕𝒕𝟎𝟎 − 𝒙𝒙𝒃𝒃𝒑𝒑 𝒕𝒕𝟎𝟎

ln 𝒙𝒙𝒒𝒒𝒕𝒕 𝒕𝒕𝟎𝟎 − ln 𝒙𝒙𝒃𝒃𝒃𝒃 𝒕𝒕𝟎𝟎
𝒂𝒂𝒂𝒂𝒂𝒂 𝜺𝜺𝒐𝒐𝒐𝒐 =

𝒚𝒚𝒑𝒑𝒊𝒊 − 𝒉𝒉𝒑𝒑𝒊𝒊 𝑴𝑴𝒊𝒊 𝒙𝒙 𝒕𝒕𝟎𝟎

ln 𝒚𝒚𝒒𝒒𝒒𝒒 − ln𝒉𝒉𝒒𝒒𝒒𝒒 𝑴𝑴𝒊𝒊 𝒙𝒙 𝒕𝒕𝟎𝟎
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