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Overview of Lecture

1. Do we linearize the Bayesian problem or do we find 
the Bayesian Problem for the linear increment?

2. Geometric Tangent Linear Approximation
3. Mixed Multiplicative-Additive Incremental 4DVAR
4. Lognormal Detection Algorithm
5. Mixed Lognormal-Gaussian Mixing Ratio –

Temperature retrievals
6. Optimal Regions for Descriptive Statistics for 

Lognormal Based DA
7. Chaotic Signal with Newton-Raphson solver and 

Lognormal DA
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Do we linearize the Bayesian problem or do we find the 
Bayesian Problem for the linear increment?

The first version of a incremental approach for a lognormal based variational data assimilation method 
appears in Song et al., (2012).  Their starting point was to define an increment as

𝒙𝒙𝒕𝒕 = 𝒙𝒙𝒃𝒃 ∘ 𝒆𝒆𝚫𝚫𝒙𝒙

Where the circle represents the Hadamard multiplication operator which is a component wise vector 
multiplication.  This increment is then substituted into the background component of the lognormal cost 
function which results in 

𝐽𝐽𝑏𝑏 𝒙𝒙 =
𝟏𝟏
𝟐𝟐 𝚫𝚫𝒙𝒙 𝑻𝑻𝑩𝑩𝒍𝒍

−𝟏𝟏 𝚫𝚫𝒙𝒙 + 𝚫𝚫𝒙𝒙,𝟏𝟏

Which has linearized the cost function by removing the logarithms but this is not consistent with 
keeping the probability distributions the same on either side of the equals side as dictated by the 
uniqueness theorem for moment generating functions.  If we assume that the true state is a lognormally 
distributed random variable (RV), and that the background is also a lognormally distributed RV then we 
require the exponential term to also be a lognormal RV.  This can only occur if 𝚫𝚫𝒙𝒙 is a Gaussian RV.  
Therefore, for us to be able to optimize the increments we need to be solving a Gaussian cost function 
for it.

In Song et al., (2012) they present results from both the linearized version which did not 
work well, which is to be expected as the Bayesian problem is not consistent, but when they used what 
they refer to as the median approach, which is the equation above with out the inner product, they were 
able to show better results than assuming a Gaussian based approach.  

The motivation in Song et al., (2012) for a lognormal approach was to avoid negative values 
for positive definite variables, that the Gaussian approach kept giving.
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Song, H. C., A. Edwards, A. M. Moore and J. Fiechter, 2012: Incremental four-dimensional variational data assimilation of positive-definite oceanic variables using a 
logarithmic transformation.  Ocean Modell., 54-55, 1—17.



Do we linearize the Bayesian problem or do we find the 
Bayesian Problem for the linear increment?

In Fletcher and Jones (2014) and alternative incremental 
formulation was proposed.  The alternative formulation focused upon 
keeping the problem lognormal as much as possible.  Therefore, this 
implied that the formulation linking the true state to the background 
state needed to be lognormal and not be such that it linearized the 
cost function.  The definition that keeps the problem lognormally 
consistent is

𝒙𝒙𝒕𝒕 = 𝒙𝒙𝒃𝒃 ∘ 𝚫𝚫𝒙𝒙
This now implies that for both sides of the equal sign to be 

lognormal, if the true state is assumed to be a lognormal RV and so is 
the background, 𝚫𝚫𝒙𝒙 must also be a lognormal RV.  Substituting this 
expression into the full field background component of the cost 
function results in 

𝐽𝐽𝑏𝑏 𝒙𝒙 =
1
2

ln𝚫𝚫𝒙𝒙 𝑇𝑇𝑩𝑩𝒍𝒍−𝟏𝟏 ln𝚫𝚫𝒙𝒙 + ln𝚫𝚫𝒙𝒙 ,𝟏𝟏

Which is a lognormal cost function for the mode of a lognormal 
distribution.
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Fletcher, S.J. and A. S. Jones, 2014: Multiplicative and additive incremental variational data assimilation for mixed lognormal-Gaussian errors. Mon. Wea. Rev., 
142, 2521—2544.



Geometric Tangent Linear Approximation

The question now is how to linearize the observational component with 
respect to a multiplicative increment?  That is to say we need to linearize 
𝒉𝒉 𝒙𝒙𝒃𝒃 ∘ 𝚫𝚫𝚫𝚫 . In Fletcher and Jones (2014) it is shown that we can use the 
same theory behind a tangent linear approximation with an additive 
increment but now using an multiplicative increment.  If we consider the 
diagrams below

The plot on the left is to illustrate how we obtain the additive tangent linear 
approximation, whilst the figure on the right is to illustrate how we can obtain 
an expression involving multiplicative increments.
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𝒙𝒙 𝒙𝒙 + 𝜹𝜹𝜹𝜹

𝑓𝑓 𝒙𝒙

𝑓𝑓 𝒙𝒙 + 𝜹𝜹𝜹𝜹

𝑓𝑓 𝒙𝒙

𝑓𝑓 𝒙𝒙 ∘ 𝚫𝚫𝒙𝒙

𝒙𝒙 ∘ 𝚫𝚫𝒙𝒙𝒙𝒙



Geometric Tangent Linear Approximation

This then allows us to be able to use standard derivative results 
for a multiplicative increment.  Which means that for lognormal 
3DVAR the observation operator can be approximated by

𝒉𝒉 𝒙𝒙𝒃𝒃 ∘ 𝜟𝜟𝜟𝜟 ≈ 𝒉𝒉 𝒙𝒙𝒃𝒃 +
𝜕𝜕𝒉𝒉
𝜕𝜕𝒙𝒙

𝒙𝒙𝒃𝒃 𝜟𝜟𝜟𝜟 − 𝟏𝟏

And for 4DVAR by

𝒉𝒉𝒊𝒊 𝑴𝑴𝒊𝒊 𝒙𝒙𝒃𝒃 𝒕𝒕𝟎𝟎 ∘ 𝚫𝚫𝚫𝚫 𝒕𝒕𝟎𝟎 ≈ 𝒉𝒉 𝑴𝑴𝒊𝒊 𝒙𝒙𝒃𝒃 𝒕𝒕𝟎𝟎

+
𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝝏𝝏

𝝏𝝏𝑴𝑴𝒊𝒊
𝝏𝝏𝝏𝝏

𝒙𝒙𝒃𝒃 𝒕𝒕𝟎𝟎 𝚫𝚫𝚫𝚫 𝒕𝒕𝟎𝟎 − 𝟏𝟏
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Mixed Multiplicative-Additive Incremental 4DVAR

As we do not live in a just Gaussian or lognormal world, we 
have to combine the two approaches, as we have done for the 
full field (Fletcher, 2010).  We therefore define our incremental 
vector as

𝚫𝚫𝐱𝐱𝐦𝐦𝐦𝐦 =
𝜹𝜹𝒙𝒙𝒃𝒃𝒃𝒃 𝒕𝒕𝟎𝟎
𝚫𝚫𝐱𝐱𝐛𝐛𝐛𝐛 𝒕𝒕𝟎𝟎

This then gives the following 4DVAR cost function (Fletcher 
and Jones, 2014).
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Mixed Multiplicative-Additive Incremental 4DVAR
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Mixed Multiplicative-Additive Incremental 4DVAR

The Lorenz model is given by the following non-linear system of 
three ordinary differential equation

𝒙̇𝒙 = 𝜶𝜶 𝒚𝒚 − 𝒙𝒙
𝒚̇𝒚 = 𝝆𝝆𝝆𝝆 − 𝒚𝒚 − 𝒙𝒙𝒙𝒙
𝒛̇𝒛 = 𝒙𝒙𝒙𝒙 − 𝜷𝜷𝜷𝜷

The system is linearized and then discretized using the modified 
Euler scheme.  The adjoint of this scheme is calculated 
analytically.  The minimization of the cost function is achieved 
through the fminsearch routine in MATLAB which uses a 
Nelder-Mead algorithm.

The observations are calculated by adding random perturbations 
from a Gaussian distribution,  (x and y components) and 
multiplying perturbations from a lognormal distribution (z 
component) to the true model run.  
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Mixed Multiplicative-Additive Incremental 4DVAR
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Results for 20 cycles of 100ts with few accurate obs



Mixed Multiplicative-Additive Incremental 4DVAR
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Results with same window lengths and same number of obs but less accurate 



Mixed Multiplicative-Additive Incremental 4DVAR
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Results for same number of assimilation windows but with accurate observations every 
other time step



Mixed Multiplicative-Additive Incremental 4DVAR
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Results for same number of assimilation windows but with accurate observations every 

other time step
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Comparison to a full Gaussian incremental system

These results are from Fletcher and Jones (2014) paper where here we 
are presenting results from two of the experiments, the first to highlight 

where the two systems are similar and the case where the lognormal 
converges but the Gaussian does not.

Gaussian 
approximates the 
lognormal.  Small 
observational 
error variance

Lognormal 
stays stable 
whilst 
Gaussian 
does not



Lognormal Detection Algorithm

There is a lot of growing evidence that the distribution of
certain atmospheric, and oceanic fields, do not have a Gaussian
distribution continuously throughout the year. Therefore the
question becomes, how can we know when to use a lognormal
or a Gaussian based data assimilation system?

Dr. Anton Kliewer, a NSF funded postdoctoral fellow at
CIRA/CSU has been developing an algorithm that is based upon
a composite of three statistical tests which determine if the
data that you are testing are presenting a lognormal signal, a
Gaussian signal or a non-Gaussian signal that is not a lognormal
but does not determine this other distribution.

Similar work to detect non-Gaussian signals is being
undertaken at Météo-France.
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Lognormal Detection Algorithm

Hypothesis Tests:

Shapiro-Wilk – combines the information that is contained in the
normal probability plot with the information obtained from the
estimator of the standard deviation of the sample.

Jarque-Bera – a goodness-of-fit test of whether sample data have the
skewness and kurtosis matching a normal distribution.

Chi-Squared Goodness-of-Fit – determines whether there is a
significant difference between the expected frequencies and the
observed frequencies from a probability distribution.

Composite – combination of the previous three tests.

(Kliewer et al, 2015a)
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Kliewer, A. J, S. J. Fletcher, J. M. Forsythe and A. S. Jones 2015a: Identifying  Non-normal and lognormal characteristics of temperature, mixing ratio, surface pressure, 
and winds for data assimilation systems. Submitted to Nonlinear Processes in the Geosciences 
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For Shapiro-Wilk and Jarque-Bera, the null hypothesis is that the data 
comes from a Gaussian distribution.  The alternative hypothesis is the 
data does not come from a Gaussian distribution.

For the Chi-squared the null hypothesis is that the data comes from a 
lognormal distribution. The alternative hypothesis is the data does not 
come from a lognormal distribution.

The composite test combines these results – a positive result (red on 
images) indicates that the data does not come from a Gaussian 
distribution (as determined by Shapiro-Wilk and Jarque-Bera)  and it 
does come from a lognormal distribution (as determined by Chi-
squared).  A negative result (blue on image) indicates that either 
Shapiro-Wilk or Jarque-Bera determined the data to come from a 
Gaussian distribution, or the Chi-squared determined the data does not 
come from a lognormal distribution.

All tests conducted at the α=0.01 significance level (99% confidence).

Lognormal Detection Algorithm
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For this study one year (2005) of Global Forecast System 0 hr forecasts  
from the 0z runs  of mixing ratio were treated as observations of the 
``true state'' and analyzed using statistical hypothesis testing procedures.

Global 500hPa mixing ratio
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Continental United States
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Gulf of Mexico
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Off the coast of Africa
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North Atlantic/Mid-Latitudes
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Same analysis but now with the 6 hour forecast which is used as the first guess for the 
next assimilation cycle.



Surface Pressure Non-Gaussian Detection
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Indicators of when surface pressure by three month groupings had a non-
Gaussian signal, but not a lognormal signal. 



Surface Pressure Non-Gaussian Detection
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A composite for the whole of 2005 and broken down by 3 month groupings to 
detect non-Gaussian signals for surface pressure.



Mixed Lognormal-Gaussian Mixing Ratio – Temperature 
Retrievals

At CIRA we have implemented the full-field mixed lognormal-Gaussian theory 
into the CIRA1-Dimensional Optimal Estimator (C1DOE).  C1DOE is a 
microwave retrieval system that retrieves emissivities, mixing-ratio and 
temperature.    

For the experiments that we performed we updated the background 
error covariance matrices for both the Gaussian and mixed formulations.  
These updates were calculated from GDAS data for the month of September 
2005.   We have adapted the retrieval system to also perform the transform 
approach as well as the mixed formulation. 

C1DOE is a microwave radiance/brightness temperature based 
retrieval system using the radiative transfer theory set out in Liebe (1989) 
and the subsequent revisions in 1992.   A good description of C1DOE 
formulations can be found in Engelen and Stephens (1999).   The retrievals are 
performed on 7 vertical levels at 1000hPa, 850hPa, 700hPa, 500hPa, 200hPa 
and 100hPa.  

The experiment were ran for 10 days from 09/01/2005 – 09/10/2005.  
The cost function is solved using a Newton-Raphson Solver where we are 
using the correct Jacobians and are inverting the analytical Hessian matrices.
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Engelen, R. J. and G.L. Stephens, 1999: Characterization of water-vapour retrievals from TOVS/HIRS, and SSM/T-2 measurement. Q. J. Roy. Meteorol. Soc., 125, 331—351. 
Liebe, H.J., 1989: MPM – An atmospheric millimeter-wave propagation model. Int. J. Infrared and Millimeter Waves, 10, 631—650.



Mixed Lognormal-Gaussian Mixing Ratio – Temperature 
Retrievals
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Kliewer, A.J., S.J. Fletcher, A.S. Jones and J.M. Forsythe, 2015b: Comparison of Gaussian, Logarithmic transform and Mixed Gaussian-Lognormal distribution-based 
1DVAR Microwave Temperature-Water Vapor Mixing Ratio.  Under Revision for Q. J. Roy. Meteorol. Soc.

Field of View for the experiments
presented in Kliewer et al., (2015b) where
a non-Gaussian signal for moisture had
been detected near the coast of Japan for
this year from GPS station data.



Mixed Lognormal-Gaussian Mixing Ratio – Temperature 
Retrievals
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Comparisons of the three retrieval methods against the Microwave Surface and 
Precipitation Products Systems (MSPPS) TPW product. Solid is the mixed approach, dot-
dashed is the transform and the dashed is the Gaussian.



Mixed Lognormal-Gaussian Mixing Ratio – Temperature 
Retrievals
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AMSU-B Channel 4 (183 ± 3GHz) (Water Vapor Channel in the troposphere) Final Innovations



Mixed Lognormal-Gaussian Mixing Ratio – Temperature 
Retrievals
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AMSU-A Channel 6 (54.4GHz) (Temperature Channel in the troposphere) Final Innovations



Lognormal Based Quality Control Measures

The gross observational error quality control measure is roughly given by
𝑦𝑦 − ℎ(𝑥𝑥𝑏𝑏) < 3𝜎𝜎𝑜𝑜,

where 𝜎𝜎𝑜𝑜 is the observational error’s standard deviation. This measure is accounting for
approximately 99% of the distribution.

Given that this measure is consistent with percentiles, we would consider
something similar for lognormally distributed errors.

If we apply the logarithmic transform to the lognormal random variable to
make it a Gaussian random variable, then we could simply use the property of the
preservation of percentiles, which means that equivalent lognormal gross error check
could be

ln𝑦𝑦 − lnℎ(𝑥𝑥) < 3𝜎𝜎𝑜𝑜,𝐿𝐿 𝑜𝑜𝑜𝑜 exp −3𝜎𝜎𝑜𝑜,𝐿𝐿 <
𝑦𝑦

ℎ 𝑥𝑥 < exp 3𝜎𝜎𝑜𝑜,𝐿𝐿 .
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Lognormal Based Quality Control Measures
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Plot of a 10000 
lognormal 
random numbers 
from 𝑳𝑳𝑳𝑳 𝟎𝟎,𝟎𝟎.𝟓𝟓
with the 
equivalent 
Gaussian and 
lognormal gross 
error check 
bounds.
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Lognormal Based Quality Control Measures

An example from the 
Lorenz 63 model where 
the observations were 
generated from a 
lognormal random 
number generator 
multiplying the 𝒛𝒛𝒕𝒕 with 
values for the mean and 
standard deviation of 0 
and 0.0375 respectively.  
The green line is 2 SD, 
whilst the red is 3 SD.



During the implementation of a set of synthetic experiments with C1DOE to ascertain the accuracy of the 
three different approaches for a know true solution, it became apparent that something was affecting the 
performance of the modal based approach in that it could not beat the median approach even though we 
thought the problem had been set up so that the mode should have been the optimal estimator.

We ran a series of experiments with a univariate formulation with the lognormal cost function 
and used a Newton-Raphson solver to simulate the processes in C1DOE.  During these experiments we 
discovered 4 important findings relative to the performance of a lognormal modal based variational 
problem (Fletcher et al., 2015).
I. The three descriptive statistics, mean, median and mode, had regions relative to the apriori state 

such that they were the statistic that minimized the errors.
II. There existed a value for the a priori state for each statistic such that the minimum of the cost 

function was at the true state.
III. That if an a priori state was close to this optimal value then the Newton-Raphson solver became 

chaotic and incredibly sensitive to the first guess to the solver.
IV. The a priori state should not be the best approximation to the true state for the lognormal modal 

approach but rather to 𝐸𝐸 ln𝒙𝒙𝑡𝑡 . This is because

𝐿𝐿𝐿𝐿 𝜇𝜇,𝜎𝜎2 ≈
1
𝑥𝑥

exp −
1
2

ln 𝑥𝑥 − 𝜇𝜇
𝜎𝜎

2

If the a priori state is close to the true state the median is optimal in minimizing the errors whilst if the a 
priori state is close 𝜇𝜇 then the mode is the optimal statistic.

Optimal Regions for Descriptive Statistics for 
Lognormal Based DA

8/3/2018 JCSDA 2018 Colloquium on Satellite DA 34

Fletcher, S. J., A. J. Kliewer and A. S. Jones, 2018: Quantification of optimal choices of parameters in lognormal variational data assimilation and their chaotic behavior.  
Submitted to Mathematical Geosciences



Optimal Regions for Descriptive Statistics for Lognormal 
Based DA
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Plot of absolute error for different values for the apriori state for 
different lognormal descriptive statistic cost functions.

Optimal values are 

Mean: 𝒙𝒙𝒂𝒂𝒂𝒂 = 𝒙𝒙𝒕𝒕𝒆𝒆−
𝝈𝝈𝟐𝟐

𝟐𝟐

Median: 𝒙𝒙𝒂𝒂𝒂𝒂 = 𝒙𝒙𝒕𝒕

Mode: 𝒙𝒙𝒂𝒂𝒂𝒂 = 𝒙𝒙𝒕𝒕𝒆𝒆𝝈𝝈𝟐𝟐



Optimal Regions for Descriptive Statistics for Lognormal 
Based DA
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Impact of the 
variance on the 
range where the 
median minimizes 
the error.



Chaotic Signal with Newton-Raphson solver and 
Lognormal DA

It was when we introduced a measurement error to determine what the optimal value 
for the a priori state (or the observational and background variances) that we started to 
detect that there was something happening to the accuracy of the solution of the modal 
approach with the Newton-Raphson solver with respect to the choice of first guess to 
the solver!!
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Chaotic Signal with Newton-Raphson solver and 
Lognormal DA

Upon a series of trial and error experiments with the first 
guess values we started to see that the point where we needed 
to start from to ensure accuracy of 𝟏𝟏𝟏𝟏−𝟖𝟖in our solution or 
better was changing, but that this value at every decimal point 
was changing!!!  

We would get to a value at each decimal point that if we 
went past that number at that decimal point we would lose 3 
to 4 figures of accuracy!!  To investigate this feature we ran do 
loops over first guess to the Newton-Raphson solver stepping 
by 0.001 and for measurement errors stepping at 0.001 from 0 
to 1.  This is what we found
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Chaotic Signal with Newton-Raphson solver and 
Lognormal DA
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Chaotic Signal with Newton-Raphson solver and 
Lognormal DA

To investigate how wide spread this chaotic 
affect was we changed the values for the 
optimal apriori state to be 99%, 99.9%, 
99.999% and 99.9999% of optimal and what 
we found was worrying.
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Chaotic Signal with Newton-Raphson solver and 
Lognormal DA

This signal is not only present when the a priori state is
optimized for measurement error. It is also present when the a
priori state is optimized for representative errors as well as in
the Gaussian formulation and the incremental lognormal
formulation.

A different fractal appears for each and for different true
states as well as different background and observational errors.
It is also present when the background or the observational
errors are optimized to correct for the other incorrect
statistics to ensure that the minimum of the cost function is at
the true state.

This patterns are referred to as Newton-Fractals and
occur when the quadratic convergence breaks down.
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Conclusions

 It is possible to go non-Gaussian in the variational 
framework, while not shown here it is also possible to go 
non-Gaussian with the PSAS system.

 We have to be careful when selecting which descriptive 
statistics we use to minimize the lognormal errors, which is 
dependent on how close the a priori state is to true state.

 There appears to be a sensitivity in the Newton-Raphson 
solver when the cost function is at the “optimal” values. 

 It is possible to extend the Gaussian based observational 
quality controls to lognormal formulations.

 Possible to combine different distributions to create mixed 
distributions to model the covariances between random 
variables that are of different distributions.
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CIRA Data Assimilation Testbed (CDAT)

As part of a new NSF award to CIRA we are developing 
a website that will be running the three different versions 
of the retrieval system in near real time in different 
regions over the Earth.
Along with the output from the three different retrievals 
systems, there will also be the output from the detection.  
The purpose of also showing the detection algorithm 
output on the website is for users to look at where a 
non-Gaussian signal has been detected and to look at the 
impact on the values from the retrieval systems to make 
decision of where the Gaussian fits all could be sub-
optimal in those areas.
The website address will be http://.cdat.cira.colostate.edu
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CDAT
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http://cdat.cira.colostate.edu
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Gaussian Fits 
all

Mixed Gaussian-
Lognormal
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