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Connecting Models and Observations

15.3.1 BERGTHORSSON AND DOOS [142]

An interesting feature of Bergthorsson and Dé66s’s [142] paper is the description of how numerical
weather prediction began to be undertaken in the 1950s. Here are the first two paragraphs of the 1955
paper:

The first attempts at numerical weather forecasting on a routine basis have been characterized by a
combination of tedious manual work on one hand and electronic computations with extremely high
speed on the other. The weather observations are plotted on maps, examined and analyzed. From
this manual analysis values are interpolated at a great number of grid points and punched on a paper
copied. Finally the electronic computer can start the forecasting procedure. The manual part of these
operations consumes time that is out of proportion to the time required for the machine computation.
This, however, is not the only disadvantage.

The manual analyst cannot be expected to use systematic and quantitative methods in his
interpolations and extrapolations. His work is rather a complicated curve-fitting by the eye based
on a number of more or less well established rules. The analysis will, in other words, be subjective
and depending on the skill of the meteorologist. It is furthermore very difficult to avoid wiggles
and irregularities of small scale which are neither desirable nor justified by observations. These may
frequently amplify in the forecast computation and thus reduce the value of the final forecast. Errors
in the reading and punching of values in grid points are also highly probable.

The starting point for the derivation of what would become successive correction in [2] in [142]
was to use the observations of the wind and height fields at the 500 mb height as the “informations,”
along with the 12- or 24-hour barotropic forecast valid for the same time as the analysis, and the normal

height of the 500 mb level for the particular month when the analysis is made.
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FIG. 15.1
Copy of figure 3 from [142] from the first version of objective analysis.
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15.4.1 UNIVARIATE LINEAR LEAST SQUARES

The best way to introduce least squares, and weighted least squares, is through a toy problem. A classic
example, which is used in many classes/lectures on least squares, is to consider the case where you
are recording a temperature of a situation, either in a room, or at a specific location. You start with
a prior estimate of the temperature, referred to here as Ty, and that you have an observation of that
temperature, denoted T,. There will also exist a true temperature that we do not know but is denoted
T;. We can define the errors in the background and the observation as

Ep = T!:-' = T;.

g0 =Ty —Thi.
We now assume that the errors above are unbiased: this then implies that e, = £, = 0, where the bar
refers to the mean of the errors.

The next step is to form an analysis, which is a linear combination of the background and the
observed value of the temperature. The analysis temperature is denoted by T,; and is defined as

Tg=01To +a2Tp + o3, (15.29)

where w3 is a constant. We now define the analysis error as e, = T, — T;, where we require this error
to be unbiased, which implies that £, = 0. If we now express the analysis state in terms of the true state
and the background and observation errors, then we have

Ta=Ti+eg=a(Ti +ep)+ar (T; + &)+ 3. (15.30)
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If we now take the expectation of (15.30), which is also referred to as taking the mean, we see that
using the fact that the mean of the background and observation errors have been assumed to be zero,
then we obtain an expression for the mean analysis error, £;, as

g2 =1 +ar — 1) T+ o3 =0. (15.31)

Since (15.31) must hold for all true temperature values, including the case where T; = 0, then a3 = 0.
This implies that &y + @2 = 1, which implies that o = 1 — @;. We shall now drop the subscripts on ¢
as there is only one remaining. Therefore the general linear unbiased estimate for this problem is

y A, JECE R ) (15.32)

The next step is to determine what the value of « is. To achieve this we consider the error of the estimate
in (15.32). If we now subtract the true state from both sides of the equation in (15.32), and recall the
definitions for the various errors, we have

Eq =0Eg + (1 —a) gy, (15.33)
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If we now form the variance of (15.33), which we shall denote by Uf for i = a, b, 0, then we have

2
i s

= O or + 2o (1 — @) opop + (1 —cr}“arh (15.34)
where we have used the property
VAR [aX, + bX>] = a’ VAR [Xi]1+ b*VAR [X2] + 2abCOV [X X2] .

We now assume that there is no covariance between the background error and the observation error,
which then leaves

2
oy =

== (; + {1 — u)ﬂrb (15.35)

We now wish to consider three properties of the estimate in (15.35). If we take the first derivative
of (15.35) with respect to &, then we obtain

dor? "
d{: — 2ac? —2(1 —a)of. (15.36)
If we consider the case when ¢ = 0, then we have that (;,_,' — rrb and from (I:a 36) that ':g; — —20§ =2 i
If we now consider the case when a = 1, then we now have that 07 = ¢2. and again from (15.36) that
2
L5 — 202 > 0.
Given this information about « = 0 and @ = 1, we can deduce that for 0 < o« =< 1, analysis

variance is less than or equal to the maximum of the background or observation variance, that is to say,
o2 < max ((er ; ﬂrﬂ] We also have that the minimum variance estimate occurs for a value of « that lies
between 0 and 1 but not including them, that is to say, for o € (0, 1). Finally, we have that the minimum
variance estimate satisfies

A Lo 2
o, < min (r_rb ; UU) :
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Therefore, the minimum variance estimate occurs when the derivative in (15.36) is equal to zero,

d(.rE% o 2 Hg
— =2ao, —2(l —a)o, =0, = a= > s (15.37)
do o5 + 0%
Thus, the error variance of this now minimum variance estimate is
-]
5 i .1
w=\=+=] - (15.38)
oy 05

Therefore, the estimate with value of @ derived in (15.37) is referred to as the best linear unbiased
estimate, or BLUE.

Example of the analysis distribution for least squares
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15.4.2 MULTIDIMENSIONAL LEAST SQUARES

We now move on to the multiple dimension problem where instead of a scalar prior estimate, we now
have a vector that is denoted xp, where the b refers to the background. This vector can be viewed as
representing the complete state of a numerical model at some time, where the elements of x; may be
erid point values, spherical harmonic coefficients, but also where the vector’s elements do not represent
only one physical attribute, i.e., not just temperature but temperature, winds, sea surface temperature,
soil moisture, salinity, magma density, etc.

We now introduce the vector of observations y which contains observations, both direct and indirect,
at different locations to the grid points, and of different variables. Therefore, we need to be able to
match the background state to these locations and in terms of these observations. To formalize this
we introduce the observation/forward operator, which can be a nonlinear operator, and is denoted by
h (x). This means that /i (x) can be compared to y, where the h (x) represents the model equivalent of y.

For the time being we are going to assume that the observation operator does not introduce any
errors, so that

h(x) =y, (15.39)

where x; is vector of the true states, and y contains the true values of the observed quantities.
As with the scalar case, we now seek an analysis that is a linear combination of the background and

the observations, which in a matrix vector form is
xa = Fxp + Gh (xp) + Ky +c. (15.40)

where F, G, and K are matrices to be determined, and ¢ is an unknown vector.
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If we assume that &z is linear, then we can look for a linear unbiased estimate as we did for the scalar
case. If, however, & 1s nonlinear, then we require that error-free inputs, that is to say, x, = x; andy =y,,
produce error-free analysis, that is to say, x; = x;, which then implies

x; = Fx; + Gh(xi) + Kh(x) +c. (1541

We require the expression in (15.41) to hold for all true states, including the case where x; = 0, which
then implies that ¢ = 0. This in turn implies that

Fx; + Gh (x;) = Ix, — Kh (x)). (15.42)

and therefore we can see that the expression in (15.42) can only hold if F =1 and G = —K. Therefore,
the analysis equation for this situation is

xg=xp+ K@y —hixp)). (15.43)
We now need to determine what the matrix K is. If we recall from the scalar case we had that
Iy=aly+ (1 —a)Tp,=Tp +a (T, —Tp),

which is similar in appearance to the matrix equation in (15.43), and therefore, the K matrix plays a
role of the weights given to the observations as well as handling the information of the transformations
between the observation space and model space. The matrix K is referred to as the gain matrix.
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We now introduce the definition of the errors for the multidimensional analysis error along with the
multidimensional versions of the background and observation errors as

Eq =Xg — Xy, (15.44a)
ep =Xp —Xr, (15.44b)
€o =y — ¥;- (15.44¢)

The next step is to make the assumption that the errors are small, which then enables us to linearize
the observation operator about the background state, and then have a linear model for the error. This
implies that

h(xp) = h(tp) + Hep + O (sg) ._ (15.45)

where H is the Jacobian of the observation operator, defined as

dh; (xp)
B o (15.46)

wherei =1,2,...,Nyandj = 1,2,...,N, where N, is the number of observations and N is the number
of entries in x.

We now substitute the expressions for the errors from (15.44a) to (15.44¢) into the analysis equation
and use the property that & (x;) = y,, which then results in the following equation to the first order of

€a = €p + K(eo — Hep). (15.47)

We now assume again that the mean errors have be removed so that [£[e,] = E[e,] = 0: given this

i]lfﬂ{"l'l'l&tiﬂ]]., e fri:":n (1 %8?@—&!&1}%[§F4m:er%orksho_p on Theory and Use of
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As we are now seeking a statistical weight, we recall the definition for a multivariate distribution as
C=E|[(x—3)(x—%)]. (15.48)

and we recall that covariances matrices are symmetric and positive definite matrices.
We return to the analysis error equation (15.47), which we can rewrite in the following form,

eq = (1 — KH)ep + Ke,,. (15.49)

The next step is to form the analysis error covariance matrix which is obtained by taking the
expectation of the product of the vector of analysis error with its transpose, which is referred to as an
outer product, therefore we have

E [s,_f,e;"] _E [({[ _ KH)ep + Kep) (1 — KH)ep + l{s”}T] ._
— (1—KH)E [Ebsg] (I —KH) + (1 - KH)E [ehej;"] KT
+KE [sﬂ.s};] (I — KH)T + KE [sﬂeﬂ K.
(15.50)

GOES-R & JPSS Summer Workshop on Theory and Use of
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As with the scalar case, we assume that there is no correlation between the background errors and the
observational errors. This then simplifies (15.50) to

E|esel | = A~ KIE [epe] |0 - KI) + KE[e,e] | KT, (15.51)

where we can see that the expression in (15.51) is similar to the scalar version we derived earlier, i.e.,
{ré" —= (1= n:r}2 UE + a::rgf:rf. Thus, we see that the K matrix in (15.51) i1s equivalent to « in the scalar
case, where we showed that the value of @ was chosen so as to minimize the variance.

However, we have to address how we minimize the variance in a multidimensional situation. We
have seen from Chapter 4 that the covariance matrices contain the variances of the variable in their
diagonal entries. This implies that it is possible to define the minimum variance analysis as that which
minimized the sum of the diagonal elements of the analysis error covariance matrix. It is possible to
obtain a function of the diagonal entries of a matrix through its trace, which we shall denote as Tr. We

recall that for the scalar case we were able to obtain the expression for the minimum variance analysis

by setting ﬁf = 0. For the multidimensional case we do something similar, but with respect to the

trace of the analysis covariance matrix as

_.Tr (E[EHE"?:D o | & (15.52)

W
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In order to apply the derivative in (15.52) to the expression we have for the analysis error covariance
matrix in (15.50), we require the following identities for the derivative of the trace of the product of

maltrices:
Tr (KAKT
(a}c ) =T(A+AT)$
IrKA) _ 1
dK ’
Tr (AKT)
e

Substituting these properties into (15.52) acting on (15.50) results in

(e {E?EED — 2K (HE [e;}eﬂ] H +E [eﬂsg]) —2E [Ef:-ef;] H' =o0. (>.

N
h
T
o

Rearranging (15.53) and factorizing leads to the expression for K as
; —1
K—E [shsﬂ H’ (H]E‘. [Ebsg] H +E [e,,,eﬂ) . (15.54)

The expression in (15.54) is for the optimal gain matrix which is called the Kalman gain matrix;
we shall see why in Chapter 19. We can see that the appearance of the optimal expression for K in

- : . : i z .:';1
(15.54) is quite similar in apgearance to that of the scalar case, where we have o = —2—.
OES-R & JPSS Summer Workshop on Theory and Use of O +05
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The method that we have used to obtain the expressions for the minimum variance estimates is the
weighted least sum of squares approach. If we had not had the « or the K terms, then that would be
the method of least sum of squares.

Before we move on to nonlinear least squares theory, we introduce some standardized notation for
the different covariance matrices in (15.54) as set out in [ 149]:

P — [EHEE] PP [sbeg} . R=E [s”sﬁ] , (15.55)

where P¢ is the analysis error covariance matrix, P” is the background error variance matrix and
R is the observation error covariance matrix. Note: in most variational data assimilation derivation
the background error covariance is usually approximated and is denoted by B.

Exercise 15.3. Show that the Kalman gain matrix can also be defined as

x5 B
K— ((Pﬁ") +HTR—‘H) 'R

GOES-R & JPSS Summer Workshop on Theory and Use of
Satellite Data
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Quote comes from Tarantola and Valette where they state that:

The aim of physical sciences is to discover the minimal set of parameters which
completely describes physical systems and the laws relating the values of these
parameters to the results of any set of measurements on the system

Definition 15.4. If given some information on the values of the set of parameter, we try to use a
theoretical relationship in order to obtain information on the values of some measurable quantity; this
is solving a direct/forward problem.

If given some information on the values of some measured quantities, we try to use a theoretical
relationship in order to obtain information on the values of the set of parameters; this is solving an
inverse problem [151].



15.6 OPTIMAL (OPTIMUM) INTERPOLATION/STATISTICAL
INTERPOLATION/ANALYSIS CORRECTION

Given the statistical and probability theory from the last section, we now move on to the last of the
set of non-variational-based data assimilation schemes. The reason there are three names in the title
of this section is that optimal interpolation, which was originally derived in the Soviet Union by
Gandin in 1963, translated into English in 1965 [4], is often not considered as actually being an optimal
interpolation. In fact the actual name for this method is optimum interpolation.

Statistical interpolation is the phase coined by Dr. Roger Daley in his very good book “Atmaospheric
Data Analysis,” [ 157] but also in his publications [ 158]. The final name, analysis correction (AC) comes
from a permutation of optimum interpolation theory that lead to the operational implementation at
the United Kingdom’s Meteorological Office [159]. In this section we shall present all three different
formulations, but we shall state that it 1s quite difficult to obtain a copy of Gandin’s book. However,
there 1s a good derivation along with an explanation of the practical aspect of the optimum interpolation
method in a paper by Alaka and Elvander in 1972 [160]. It is the derivation from [160] that we

summarize here.

GOES-R & JPSS Summer Workshop on Theory and Use of 18
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15.6.1 DERIVATION OF THE OPTIMUM INTERPOLATION FROM ALAKA
AND ELVANDER [160]

Letr; =rp,ry,...,r, denote a set of independent vectors defining the location of points in a sampling
space. Next we consider a function f (r) whose sampled values f; = fi./f2.....f: have errors g; =
£1.£7...,&, 50O that

fi=fi+e&i. (15.126)

The problem then is to determine the values of fp at some location rg from the measured valuesﬁ;.
We now let f;’} and f; denote the deviations of fj and f; from their respective mean states, which then
allows us to express f;; in terms of the following linear combination:

f
fo=>Y_(f +&)Pi+1, (15.127)
i—1

in which P; are the weighting factors and [y is the errors in determining f;; by interpolating fmmﬁ.
We now define the mean square interpolating error as being given by

2

A
=
e=Tg= | Y [+ Pi—K | » (15.128)
i=1
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We now make the standard assumption that the random (background) errors, £;, are independent of

the true values of the measured quantities, which means that siﬁ = 0, and that they are unrelated to
each other, which implies that

0 i#j,
gE o O (15.129)
o5 =]

- - D - - . .
where in [160] o is the mean-square random observation errors. The assumptions above imply that
the random errors do not affect the values of the true covariances, but inflate the true variances (IE-Q by

an amount (fﬁ%.
Given the assumptions above, we can rewrite (15.128) as

f R ____ " R
e=) Y fifPiPi+) oaPi—2) fifsPi+op. (15.130)

The optimum weights, p;, corresponding to a minimum value of €, are obtained by setting

2
AL | (15.131)
dP;

As we saw in the linear regression section, (15.131) forms the set of linear equations
n -
== > = . _
Y ffip+olp=ff, i=12....n (15.132)
J=1

If we now denote the minimum of the mean-square error, €y;,, by E, then combining (15.130) and
(15.132), we obtain

n
2 s -
GOES-R & JPSS%lfn%r_WEJhgﬁ?bn Theory and Use of (15.133)
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Definition 15.6 (Homogeneity of Variances). Homogeneity of variances assumes that the dependent
variables exhibit equal levels of variance across the range of predictor variables. This is also true for
the covariances and is referred to as the homogeneity of covariances.

Definition 15.7 (Isotropic). A covariance is said to be isotropic if it is uniform in all directions.
This implies that the values are the same even under a rotation of the points.

We now assume the two properties defined above for the variances (homogeneous) and for the
covariances (homogeneous and isotropic). This enables us to write (15.132) as

n

ZﬁEJIﬂ+l?PE=H{J,h fori=12,...,n, (15.134)
j=1
and (15.133) as
n
E=oc? 1= popi]. (15.135)
=
where
e
..
Hfl- T 0-2 =

is the autocorrelation coefficient between values of the function at locations r; and rj, while

Tofi

ol

Hoj =
is the autocorrelation coefficient between values of the function at rp and r;, and finally
o2
o2’
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For us to be able to effectively minimize the root mean square interpolation error through the
procedure just described, we require accurate estimates of the random errors, the variance, and the
autocorrelations functions. We have already assumed that the variances are homogeneous, and that
the covariances are homogeneous and isotropic. Therefore, to determine the root mean square random
error, o, we assume a structure function, g, to be homogenous and isotropic. Under these assumptions,
this function depends only on p = r; —r;, which is the distance between observation pairs located at r;
and r;. Therefore,

B(p) = (f; —f,—’)g. (15.136)

Now it is stated in Alaka and Elvander that the estimated structure function, ﬁ(p}, is related to the true
function g (p) through

A(p) =B (p) + 202, (15.137)

but they reference Chapter 2 from Gandin’s book as their source for (15.137).

Alaka and Elvander then state a procedure to obtain estimates for 2o, term as that of fitting a curve
to the computed structure function £ (p) plotted against distance p and extrapolating the curve until
it intersect the axis of B (p) at p = 0. It is then stated that the value of nf:rf2 will comprise of both the
random measurement errors and the aliasing errors inherent in the observations.

GOES-R & JPSS Summer Workshop on Theory and Use of
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Determining the autocorrelation functions

Under the assumption of homogeneity and isotropy for the autocorrelations, the p is function of

distance p between observation pairs and as such can be written as @ (p) = J%,{‘rr
However, in [160] the authors state that when they plotted the autocorrelations then the results

contained scatter which was a result of the anisotropy and non-homogeneity of the true autocorrelations.

To smooth these non-conforming autocorrelations, the points were divided into 100 km segments, with

the middle of these intervals stored in the vector d, and then given the number of points in each interval

N, they use the following function:

1 1 i —d
N,'(— +—EDSM)

fl
& Z 3 100
n@d=Y" i) T (15.138)
. i {
i—=1 jzlﬁr}(i —l_EGGST)

where p; denoted the distance between the pairs of stations used in the calculations.
The values u (d) obtained through (15.138) were then fitted to the empirical curve of the form

w1 (p) = (Ae.—ﬂﬂ" L ,4) cosDp. (15.139)

We have recreated the four plots of the autocorrelations of the zonal winds from [160] at 850 and
200 mb in January and July in Fig. 15.4. We can see that they detected seasonal changes as well as
changes with respect to height. The determining of autocorrelation and variances is a task that still

716/8ffects the performance of the datPassitnitation schiemes todiyry and Use of
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Autocorrelation

FIG. 15.4

Recreation of the autocorrelation plots from Alaka and Elvander (1972) for the zonal winds at 850 and 200 mb

in January and July.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Recreation of figure 2 from Alaka and Elvander (1972)

\
h*.
B —— 850 MB zonal wind Jan
L — 850 MB zonal wind July
\ —— 200 MB zonal wind Jan
i \ 200 MB zonal wind July
i \
IIII‘-
- t‘h‘
_ b
\"‘x
. e i o
0 0.5 1 1.5 2 2.5 3 35

GOES-R & JPSS Summer Workshop on Theory and Use of
Satellite Data

24



e

1

. R
-

25

1] of grﬁgsrﬂ@gtbggéateral correlation functions.

6

GOES-R-&JPSS SummerWorkshop-onTheory-and Useof

Copy of figure 1 from Bergman (1979), [1

Fi&. 15.7

7/16/2019

M T

N P ) PR I S S



7/16/2019

VARIATIONAL DATA
ASSIMILATION

CHAPTER OUTLINE

16.1 Sasaki and the Strong and Weak Constraints............oviiiiiiiiiiiiii s
16.2 Three-Dimensional Data Assimilation
16.2.1 Gaussian FrameWorK. .. ... e et et e e e e e ea e aa e aeas
16.3 Four-Dimensional Data Assimilation
16.4 Incremental VB R ... it et et ae e
16.4.1 Incremental Spatial VAR, 1D, 2D, and 3D VAR
16.4.2 Incremental Temporal 4D VAR
16.4.3 Inner and OUer LOOPS ... e et et e e e e et e e enaas
16.4.4 First Guess at Appropriate Time
16.5 Weak Constraint—Model Error 4D VAR ... v e e e e e
16.5.1 Model-Bias Contral Variable ... ..o e e e ana e e e e ne e
16.5.2 Modeling the Model Error Covariance Matrix
16.5.3 Model Error Forcing Control Variable
16.5.4 Model State Control Variable
16.6 Observational ErTOrs. ..ottt e et et et e a e e e e e ea e eaas
16.6.1 Correlated Measurement Errors
16.7 4D VAR as an Optimal Control Problem
16.8 Summary

GOES-R & JPSS Summer Workshop on Theory and Use of
Satellite Data

26



H
/

(B)

Fl&. 16.1

(A) Schematic of filtering, where the blue line is the true trajectory, the red line is the 3D VAR trajectory, and the
circles are the observations at the analysis times. (B) Schematic of smoothing where the blue line is the true
Hajectory, the black g jthe ADUAR ARG HBIRCIAM0Y Hle.Eires 1% Rhsgations throughout the
window.
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16.1 SASAKI AND THE STRONG AND WEAK CONSTRAINTS

In the previous chapter we introduced the different statistical-based schemes that were used for data
assimilation belore the introduction of the variational-based schemes. The emphasis here is on the
statistical component. All of the various schemes, successive corrections, Barnes scheme, optimum
interpolation, and analysis correction were based on minimizing a form of sum of squares, which for a
linear Gaussian case i1s equivalent to linding the state that has the minimum variance. At the same time
as the development of these scheme, there was an approach based upon calculus of variations being
developed by Yoshikazu Sasalki.

Sasaki wrote a series of papers advocating that the variational principle could be used to form an
objective analysis for numerical weather prediction | 169—174]. The two fundamental papers associated
with Sasaki’s work are: An Objective Analysis Based Upon Variational Methods [170] and Some
Basic Formalisms in Numerical Variational Analysis | 172]; 1t 1s the latter paper that we shall briefly
summarize here.

The starting point for the calculus of variational approach. which we shall refer to as just variational
from here on, is to define the functional, J. as

81 =533 (@ilg — 9 +ei (Vigi)?) =0, (16.1)
L i

where & is the variational operator, ; is the analyzed hield. ¢; 1s the observation, V; is the local change
in a finite-difference form, &; and «; are predetermined weights, and £2 1s the domain in time r and
space x|. x2. x3. Sasaki refers to the first term in (16.1) as a condition used for minimizing the variance
of the difference between the observed and analyzed values. The second term 1s a simple low pass
filter in frequency. (16.1) 1s solved with the dynamical constraint such as those given by the primitive
equations. [t 1s possible to write these constraints in the form

Vigi = Fi (i @i Vigei, Viwi) - (16.2)

where F; i1s a given function and Vy represents the space derivative with respect to x fork = 1.2, 3.
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The functional that is defined in (16.1) is quadratic and therefore the associated stationary value of
J becomes the minimum. As we saw n both the calculus of variation and the optimal control chapters,
Chapters 5 and 7, respectively, the solution of (16.1) 1s obtained through solving the Euler, or the Euler-
Lagrange, equations after the substitution of (16.2) into (16.1). Sasaki state that the disadvantage of this
approach is that it i1s only for an instantancous field and the functional does not describe explicitly the
time variations.

This disadvantage can be overcome by taking the following approaches. The first 1s an orthodox
approach and is written as

& =4 z z (& i — @) ® 4 4G (w9 Vigi. Vi ‘T*'.:t';g]l) =0, (16.3)

where G; represents a prognostic or diagnostic equation and A; is the Lagrange multiplier. The Euler
equation derived from (16.3) will include Vyg; and V,a;. 1t is noted here in [172] that the solution of
the Euler equation requires a considerable amount of effort to solve numerically.

An alternative approach 1s to formulate the functional as

61 =83 (dilpi — @) +eiG}) =0, (16.4)
2 i

where «; 15 a predetermined weight. We should note that G; 1s linear in (16.3) and quadratic in (16.4),

and that the coefficient of the & term is the Lagrange multuplier in (16.3), but i1s a weight in (16.4).
Because of these differences with the coelficients ol G, we obtain the following two conditions:

G=0, (16.5a)
G +0, (16.5b)

from (16.3) and (16.4), respectively. Sasaki refers to formalism that results in (16.5a) as the strong

constraint, and to the formalism that leads to (16.5b) as the weak constraint. We refer the reader

to [172] for an example with_the one- dll‘l‘lt:ﬂ%l(:l]'].:ll adv ction e:duatmn l'ﬂr the differences these two
GOES-R & JPSS'S op.an T Use of

approaches form. However, we shall intrc uce {J(Ll‘”;‘t IELI’[III}I'IH .:I.l strong and weak constraint

mean:
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Definition 16.1. Strong constraint: This 1s the constraint where the analyzed solution to (16.3)
must satisfy the discrete model exactly. The strong constraint 1s also stated as the perfect model
assumption. This 1s also referred to as the case where there 1s no model error.

Definition 16.2. Weak constraint: This 1s the constramt where the analyzed solutions to (16.4)
does not have to satisfy the discrete model equations exactly. The weak constraint 1s also stated as the
imperfect model assumption. This 1s also referred to as the case where there 1s model error.

GOES-R & JPSS Summer Workshop on Theory and Use of
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16.2 THREE-DIMENSIONAL DATA ASSIMILATION

From the 1986 paper by Andrew Lorenc |5], we have that the general starting point for the derivation
of the 3D VAR cost function is to consider the problem of finding the set ol initial states so that
the subsequent forecast is the best possible. Due to the problem of the forecast being imperfect, we
have to try to compensate by introducing observations. Therefore, let the state vector be x, where
x = (x),x2..... ), and N is the total number of state variables, and the observational vector, y,

where y = {}u._, Vieoons },w”};, and N, represents the number of observations with N, < N.

We now require a relationship between the model states, x and the observations, y. This relationship
15 given by

y=hx), (16.6)

where h (x) 1s a vector of nonlinear interpolations from the model states to the observations given by
by (X X2, .. XN)
ha (X1, X2, . ... XN)

L hy, (X1, %2, ... XN) J

If the relationship between the observation and the model state variables is linear, for example, an
average or a linear interpolation, then h i1s a matrix vector multiphication, Hx, where H i1s a linear
recltangular matrix of dimensions N, = N. This then gives us the problem. according to Lorenc, of
finding the “best” x that inverts ( 16.6) for a given ¥”. where ¥” is the physical observation which contain
eITOrS.

The method to set up this problem is to consider a Bayesian probability approach, where Bayes’
theorem states that the posterior probability of an event A occurring, given that event B 15 known to
have occurred, is proportional to the prior probability of A, multiplied by the probability of B occurring
given that A is known o have occurred:

GOES-R & JPSS ﬁfm@gﬁﬁfﬁgﬁﬁgm’?ﬁw and Use of (16.8)
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In the case that we are interested, we have that A is the event that x = x; and that B is the event y = y".
This then enables us to write (16.8) as
Plx=x|y=y")x P(y=y"|x=x;) Plx =x). (16.9)

where the superscript t represents the “true” solution and o represents observed value. Thus (16.9)
defines an N-dimensional PDE, which i1s denoted as P, (x), where a represents the analysis. Lorenc
then tells us that the “best” estimate, x4, 1s either the mean of Py (x).

Xg = f xPgix)dx, (16.10)

or the mode, which 1s

Xz = x such that Py (x) is maximum. (16.11)

As we mentioned earlier, the mean and the mode are the minimum varnance and the maximum
likelihood states, respectively.

GOES-R & JPSS Summer Workshop on Theory and Use of
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16.2.1 GAUSSIAN FRAMEWORK

We now consider the probability, P(x = x;), that represents our knowledge about x before the
observations are taken. This can be considered as an error, &5, which we define as

Bp =X —Xp. (16.12)

where xp represents the background state, and thus we are considering deviations away from this state,
and has a probability Py (x — xp), which will be defined soon, once the rest of the problem is set up.
The observational error can be written in terms of two parts [5]. The first part is due to instrumental
errors and the other 1s in the representativeness error. We shall consider these as one entity as the total
observational error. This then enables us to write the conditional part of the probability of (16.9) as

Ply= '”lul':.tr}:ﬂr{y”—ﬁ{ﬂ}- (16.13)

which is the observational error, £,. We have assumed that the observational and the background errors
are independent, which is an acceptable assumption | 5], and 1s made in most data assimilation schemes.
Combining (16.12) and (16.13) enables us to write (16.9) as

Palx) = Py (y" —h(x)) Pp(x —xp) = Poley) Pplep). (16.14)

We now define these probabilities in terms of a multivariate Gaussian, MG, distributions such that
&, ~MG (0, R) in other words the observational errors are multivariate Gaussian distributed with mean
0 and covariance matrix R. The background errors are such that g5 ~ MG (0, B); that is to say that
the background errors are also multivariate Gaussian distributed, with the same mean vector, but with
covariance matrix B. These distributions are then defined as

Py (gp) o exp [ —;IE‘:};‘B_JE;;I = exp —% @—xp) B x—xp) . (16.15)
Py (ey) o exp [ ——IE‘TR_JE'rJ = exp ! (v —h {.ﬂ}T R (' —h f.r]}] (16.16)
2 2 ' ’
Therefore substituting (16.15) and (16.16) into (16.9) yields
| o I - .
Pﬂx}o:;cxp'—ifx—:b]f ]l_l{x—xb}—ib‘j—ﬁ{x}}f R (¥ —hix));. (16.17)

To maximize Py is the equivalent of mintmizing — In of (16.17). This then gives us our nonlinear cost
lunction, J, as

OES-R & JPSy Summer Workdhop o pry-anddse of
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If we consider an unconstrained minimization method, such as the nonlinear conjugate gradient or
quasi-Newton methods, to find the minimum of (16.18), then we require the Jacobian and the Hessian
of (16.18). The Jacobian vector of (16.18) can easily be verified as

i

i =B 'x—xp)—H' R (y —hix)), (16.19)
where H 15 defined as
H-— E (16.20)
ax

ot
and 1s the Jacobian matnix of k with dimensions N, =« N and has dimensions N = 1 where we

have dropped the superscript o for the rest of the chapter as we ar‘; now just dealing with the physical
observations.

For the Hessian of (16.18) we present this componentwise, but be aware that these entries are
components that form a series of matrix multiplications. Thus the components of the Hessian matrix
are given by

A

3 Tpt Tp—1 |
ax,-axj‘[ﬂ +H'R H]‘_j [{,!R (v ﬁ{x]j]}_, (16.21)
where (& 15 the Hessian of it with
. d ok
Ci= a0 (ﬂ) (1622)

Therefore the dimensions of the full Hessian matrix of J 1s Ny 2 N and where there are & of the ;
matrices withi = 1,2, ..., Nandj=1,2.... Ny

Everything that we have presented above is for what is referred to as the full field formulation.
However, while Lorenc does not introduce incremental VAR in [5], he does lineanze the problem.
The linearization 1s associated with the observation operator h (x), which is based on being able to
approximate the observation operator at the true state by the observation operator at the background
state plus a small perturbation. This then implies that

fixg) = hixp) + Hiéx, (16.23)

where H is the Jacobian of the observation operator, and where we are assuming that x,, is the state that

minimizes J and is given as the nonlinear solution to
GOES-R & JPSS Summer Workshop on Theory and Use of
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We now assume that the lineanzation in (16.23) is valid in the entire range of probable values of x in
the region of xp, as such there 1s an explicit solution can be found by evaluating k at x = xp and then
rewriting ( 16.23) as

hixg)=hixp)+Hixp —x4). (16.23)

Through substituting (16.25) into (16.24), it can be shown that the following solutions are equivalent:

- —1 .

Xg = xp + (HH" O+Fy "H+ |) BH (O +F)y ' (v — h(xp)). (16.26a)
; - 1

xq =xp+BHT (O +F)~' (HBH (O +F)~' + |) (v — h(xp)). (16.26b)
T T 3! -

xq —xp + BH (HHH +U+P) (v — hxp)). (16.26¢)

Finally, in the derivation section of [3]. Lorenc refers to the expected analvsis error covariance for
this linearized Gaussian case as given by

T T T A
(g — xp)(xa —xp)T) =B — BH (HEH +D+P) HB. (16.27)

GOES-R & JPSS Summer Workshop on Theory and Use of
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(B) Tivne

FlG. 16.2

{A) Schematic of 3D VAR filtering when the cycling length is short enough to control model error, where the
blue line is the true trajectory and the red lines are the 3D VAR analysis trajectories. (B) Schematic of 3D VAR

filtering when the cycliog tength 9 5% dong tacoutioh kaedsl erFotiwhere thebluslip is the true state and the
red line is the 3D VAR analysis trajectory, anddthe.gircles grg observations. The circles are observations.
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13.1.1 DERIVATION OF THE LINEARIZED MODEL

If we consider a general nonlinear initial value problem denoted by
vi=M(xp.x2,....xN), (13.2)

where N is the total number of grid points in the numerical grid, the x;js are the discrete model variables,
forj=1,2,...,N, and the y;s are the output from the numerical model, then what we may be seeking
in various applications of data assimilation are answers to the questions of: how does x {r”+') change
with respect to x; (1")? and when we are analyzing the output y;, then what features in x; caused this? It
is possible to attempt to quantify answers to these two questions by considering tangent linear models
and the adjoint model.

To derive the linearized model, we start by expressing the x;s as either a background, or reference
state, and a perturbation such that

Xj = ij + Sl_.l' (13.3)

We are trying to ascertain how the nonlinear model is affected by the perturbation to the state, x;, which
can be approximated through considering the difference between the outputs from y (X 4+ dx) and v (X).
We have plotted the situation just described in Fig. 13.1, where we see that we can approximate the
change in the output 8y through a tangent approximation. Mathematically we can express the gradient as

dv 51 I

— S —— = dy; = X+dx)—vy 0X;. 13.4

x 3x; i 7= (yi(x ) i (X)) dx;. ( )

We now substitute the nonlinear model for v in (13.4), m:l ex and ¥he nonlinear model about the
GOES—R SSummer Wor shop AT eory an Use o
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y= f(x)

H'\f

FIG. 13.1

Schematic of the additive tangent linear approximation to the function 7 (x).

5}-‘,‘ = ¥; (x+ 53,) — ¥ (_T) =M [f] + 5I|,Iz =+ 3.1’2, N i SIN) — M (ﬁ] N i JR ,EN}.

dy; IV,
=M(IJ,EE,.....TN}+#5I|+ t”ﬂ_rg-l—"-—M[ij,fg,...,ihr}.
x| dxa
dv;
53;,-_2 eyl K27 (13.5)
j \7Y

The expression in (13.5) is the tangent linear model, which is quite often abbreviated to TLM, and
it gives an approximation for the growth of the perturbations, éx;, j = 1,2,...,N. The tangent linear
model enables us to address the question of how y; changes with respect to x;, forj = 1,2,... N and
i=1,2,.... M, where M is the.number of time, : ?R?’oy}% nun enm[J model has taken.

Satellite Data
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13.1.2 ADJOINTS

We now consider how to address the second question of linking the behavior in y; to x;. We start by
introducing a scalar measure of the outputs

J=J(yx)). (13.6)

We next expand (13.6) through a Taylor series, which then leads to a change in the measure, 8/, as

8J = Z me'ﬁ}‘ (13.7)

but we can also consider variations with respect to the x;js, which results in

5J = Z Haxj, (13.8)

where (13.7) and (13.8) are equal when both functions are linear.

GOES-R & JPSS Summer Workshop on Theory and Use of
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It is (13.8) that is of interest here, as it depends on the perturbation inputs. Given how we defined

J as a function of a function, it is possible to differentiate through the chain rule to obtain estimates

aJ

for = Fr

as

M ay aJ
’ 13.9
:h} Z(drj) i ( )

i=1

An important and areuably very powerful property of (13.9) is that it enables us to integrate the future
time gradient, or sensitivities, backwards to the initial time.

The first feature to notice here is that the tangent linear model sums the terms ‘; L over the js, while
the summation in (13.9) is over the is. To help keep track of the different terms here we shall now use
matrix-vector notation. First let the matrix M be defined as

L (13.10)

then for the tangent linear model we see that we are summing over the columns of M, while for
the model given by (13.9) we are summing over the rows of M. From the rules of matrix-vector
multiplication and introducing the vectors 8y and dx, we can write (13.5) as

dy = Méx. (13.11)
We can then also write (13.9) as
aJ dJ
= M7 (13.12)
dx dy

The matrix M as defined in (13.10) is referred to as either the resolvent of the tangent linear model,
or as the Jacobian of the nonlinear model. Given the definition for the resolvent, it is possible to write
the perturbation to the nonlinear model as

GOES-R & JPSS Summer Workshop on Theory and Use of
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13.1.4 TEST OF THE TANGENT LINEAR AND ADJOINTS MODELS

There are a series of tests that can be applied to verify if the derivation and the coding of the tangent
linear and adjoint models are correct. If we consider the tangent linear model first, then we have shown
that if we have a nonlinear M (x), and M is the tangent linear model, then for small perturbations éx
we have

M (x4 5x) — M (x) = Myéx.

If we now define the relative error as

_ Mix + ydx)— M(x)

E
K My dx

(13.22)

now if the tangent linear approximation is a good approximation, then as ¥ — 0 we should have that
the relative error should tend to zero.

If we now consider the adjoint model, then we have the following identity for the tangent linear and
adjoint model

(Méx, Méx) — (5.1-, MT}']) , (13.23)

for an inner product, {-,-), and any dx. This is a mechanism to test the accuracy of the adjoint
calculation.

GOES-R & JPSS Summer Workshop on Theory and Use of
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The third measure to ascertain the accuracy of the adjoint derivation and coding is through the

osradient test. If we recall that we have a functional associated with the adjoint given by J, then the
gradient of J i1s VJ, and it is possible to check that the gradient of the functional has been coded

correctly through the identity

Jlx +ah)—J(x)

¥ (o) = =1+ O(a). 13.24
@ == Nim (@) (13.24)
. . L VJ(x)
where h 1s a vector of unit length which is often taken to be AT Therefore, for some values of
X )2

@ away from the accuracy of the machine precision, if the gradient is accurate then we would expect
the function ¥ (@) to be approximately 1.

GOES-R & JPSS Summer Workshop on Theory and Use of
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16.3 FOUR-DIMENSIONAL DATA ASSIMILATION

The earliest form of the mathematical ideas behind modern 4D VAR appears in Lewis and Derber [29].
The approach described in [89] is to find the minimum of the cost function

Ia

Jix(tp)) = é z (W) (e (1) — xep (1)), x (1) — xp (15)) (16.28)
i=(

where 14 1s the analysis time, W 1s a werght matrix that can be changed depending on known accuracies,
the expression (-, -} 15 the inner product operator, x; 15 the output from a numerical model which
has been started by some set of initial conditions, xpo and x 15 the analyses that has come from a
simpler version of data assimilation, i.e., optimum interpolation (Ol). The problem is to seek the mitial
conditions that minimize the weighted squared differences between the original analysis from the O]
scheme at several times and the coincident solutions to the numerical model. Note: In later formulations
W becomes the background error covariance matrix, B.

The minimum of (16.28) is found through its gradient, V.J, with respect to the initial conditions. To
find the minimum of (16.28), an adjoint approach 1s used. This approach starts by considering the first-
order change to (16.28) from a small perturbation, x’ (#y), about the nitial conditions x (fg). Therefore,
J" is the first-order change in the functional and is related to the directional derivative in x' (1p) by

I = (VX (10). (16.29)

Substituting the information from (16.28) into (16.29) and introducing a linearized perturbation model,
the reader is referred to [89] for more details about this, and through using the property ol adjoints,

(e, Ay) = {A’f'.r__ j} , (16.30)
then the gradient can be expressed as

Ia K;
VJ = Z ({H iy frn+km:] i {r,-}) X (16.31)
i={}

k=i

where D is the mal.JrB(Esc_ HJBéIgf._’S erwﬂm{é{r]w&ﬂ% lo Fg}(l;nl]:me%ir?/cg:r:\tg L}lspep&}ximali{m to the linearized

perturbation equation and K; rﬂpre:;enls;sél,?g”il,{él' a,paumher of time steps from fy o §;, where (| =
I.2.....K. and K s the total number of time steps to f;.
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The extension of the adjoint techniques from Lewis and Derber (1983) to an observational-based
approach appears in Le Demit and Talagrand [178]. The approach in [178] is based upon calculus of
variations techniques and optimal control theory. The starting point in [ 178] 15 the state vector, x, that
1s defined in time by the equation

dx
— = Mix). 16.32
T (x) ( )
where M 1s a continuous nonlinear model operator acting on x.

It is assumed that there are sets of observations at different times, denoted by y (1, Ly (52). .. .. ¥ (1)
Given these observations, it 1s possible to define a functional in terms of the observations as

I
T @) =) (1) —y (6. x (1) —y (1) (16.33)

i=l

However, there i1s the problem that the observations do not exactly match the state vector and therefore
the gradient of (16.33) cannot be assumed to be exactly zero.

As in [89], 1t is the initial conditions to (16.32), such that (16.33) 1s mimimized, that are required.
To achieve this goal we take the first vanation of (16.33) with respect to a small perturbation to the

initial conditions, dx (to). Following the techniques summarized above with the continuous perturbation
equation given by

ddx
aor : 3
=AW (16.34)

where (16.34) is started from initial conditions dx (3 ) and

dM(x (1))

A(l) = =0

15 the Jacobian matrix of the model equations, then the gradient is given by

Iz

V=12 Z L* (5. tp) (x (1)) — ¥ (1)) (16.35)
i=(
where the property that I{]El._HS} 15 a linear equation {(n dx has been usgd and therefore the solution at

1 = 1; depends linearly on %9%105{ %Fésﬁggdr? ng)reéy EEESBPQE;”}, eigrlye?grré]&ek? as the resolvent between

tp and #; and is denoted by L (¢, fp) and L* (15, fp) 15 1is Hﬁjﬂ]nt as we saw in the last chapter.
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The more advance observation operator version of (16.33) appears in Talagrand |179], where the
cost function is defined by

| Qo
J@Em) =5 Y0 — k). () —hi (e (1)) (16.36)
i=I1

Given that the observation operator is a function of the model state at #;, then a discrete version of the
dynamical model equations is required, which is

Xy | =X + At M (x;). (16.37)

To find the minimum of (16.36), then we require the first vanations of (16.36) and (16.37) with
respect to the initial conditions to (16.37). By using the techniques summarized above, as well as

the adjoint property (16.30), we obtain the following expression for the Jacobian of (16.36), given
(16.37) as

Ig
Vigd = 3 (T+ AVG) (T+ A ) o (T AMG ) B (i () — ;). (16.38)
i—0
where
Hh . ’j .
H, - ,;LF]: M, Mt},a_f-rt]}
dx; dx;

are the tangent linear models of the observation operator and the nonlinear model, respectively, and *

is the ﬂd_l oint operator. GOES-R & JPSS Summer Workshop on Theory and Use of
Satellite Data
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ig

| Y 1 A
I (xg) = 5 {xp —xp0)" B! (xg —xp0) + 3 ¥ (v —hi (Mo xo)))" R (v; — hi (Mo (x))) .| (16.39)
- i

The reason to include the background. a priori information i1s because the problem is ill-posed il we
are just considering the fit to the observations as an inverse problem [ 151.175]. as there are not enough
observations to constrain all of the degrees of freedom and as such there 1s not a unique solution.

The nonlinear solution to (16.39) 1s identified through finding the zero of the Jacobian of (16.39)
which can easily be shown to be

la
Vigd =B~ (xo —xp) — Y H/ Mg R 'd; =0, (16.40)

i=l

where d; = (y; — h; {Mt},a‘ [x.].})} 1s relerred to as either the innovaiion, or the departure vector.
Another way of wrnting (16.40), and the more practical method for coding a full field 4D VAR
system, 1S as

Ve =B (00 —xp) —M] x (Hidy + M5 (Hodo +Ms (- +ME_y (HE , +M{ HE dy, ) ).
(16.41)

where in (16.41) we are moving the imnovation at time & back to time k& — 1, and then adding on
the scaled innovations HIl_Jdk—l to Hgik—lHIdk and so on back to the mitial time of the window.
Therefore, through programming the gradient in this approach. we see that we only have to evaluate
the adjoint of the tangent linear model once through the whole window rather than for each innovation
and then collecting their sums at time fp.

Therefore, in a four-dimensional variational system we are seeking the mitial conditions, but we
could also be seeking adjusted model parameters as well as bias corrections to the observations, at the

start of the assimilation windew; given & sel oL observations through thatowindow. (See Fig. 16.3 for an

llustration of the assimilation windows.) Satellite Data
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FIG. 16.3

Schematic of 4D VAR smoothing, where the blue line s the true solution, the red line is the forecast from the
previous analysis time and is the background state, and the green line is the analysis trajectory filtering when

the cycling length is short enough to control model error, and the circles are observations.
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Incremental Variational Data Assimilation

In full held 3D VAR we have to minimize the cost function
f{,:"} — ; {rf —Ih}lT B! [_t-f —.:',r;.]l + ; ["' _k {II” R-! {_P — h {rr}} ) (16.43)

If we look at (16.43) then we see that the only nonlinear term is the observation operator. Therefore,
we are going o apply the tangent linear approximation to the observation operator as

h (x") = h (xp) + Hox,

where H 15 again the tangent linear approximation to the observation operator as we have used in the
optimum interpolation and the full field 3D VAR schemes. Now if we notice that the background term
in (16.42) 1s our definition for the increment, then we are able to redefine (16.43) as a cost function for
the increment dx as

J(fx) = ; (5x)" B (8x) + ; (v — h(xp) + Héx)" Ry — b (xp) + Héx). (16.44)

Now the problem becomes to find the increment, dx?, such that (16.44) is minimized. As always
this requires us finding the zeros, hopefully only one, of (16.44). Therefore, differentiating ( 16.44) with
respect (o dx vields

B—'éx —H'R'{d, — Héx) = 0.
= (B' + H'R"'H)ér — HRdp, (16.45)

where dp 1s the background innovation, y — h (xp). Therefore we have to iteratively find the value of
dx such that it 1s possible to invert the matrix equation in ( 16.45). We should note here that we are not
updating the background innovation: this is the slight difference to the equation that we identified from
Tarantola and Valette [150] that we said was the nonlinear updated version of incremental 3D VAR.
Therefore, to make (16.45) equivalent to a rearrangement of (15.84) we would have to update d;, with
the increment added to xp and evaluate h and as such dy. This 1s not done on each iteration, but in some
implications of incremental VAR it is done at a certain stage or stages and this process is referred (o as
the inner and outer loopso Weshalsge unte someridetaldoaboutothe ianereand outer loops in the next
section; but first we move on to incremental 483t%A#R Data
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X( = Xpp + %9 = dxg = x5 — Xp . (16.46)
Thus, we need to lind a way to linearize the full field 4D VAR cost function
No

! r .
J (x) = 5 (o, —x5,0)" By " (o, —250) Zi,n (Mo (b)) R (v — b (Mo (x5))). (16.47)

with respect to (16.46). The answer is to first apply the tangent linear approximation that we used for
the observation operator in the incremental 3D VAR derivation, but first we apply the tangent linear
approximation to the nonlinear numerical model as

Mo (xf) = Ma (xp0) + Mg i8xg. (16.48)

However, before we are able to implement (16.48) we have to notice that we have to apply a tangent
linear approximation to the composite of two functions. Therefore, in general we have

F2 () =1 (2 (xp+80) = £ (2 () +f (2 () & (xp) B2 (16.49)

Given (16.49), then for our application of 4D VAR, we have

f=h;

g =My (xg) .
f=H;,

2 =My,

Thus, if we defined the ith innovation vector as dp ; = y;— (M (¥p)). then we can linearize (16.47) as

l"||ll'.|
|
J (bx0) = 5 | (3x0)" By ! (dx0) + > (dn.i — HiMojéxg)' Ry (dpi — HiMobxs ) . (16.50)
= GOES-R & JPS?Saummer Workshop on Theory and Use of
Satellite Data
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Therefore, we are now seeking the increment to the imitial conditions that minimized (16.50). Thus
we require the zeros of the Jacobian of (16.50) with respect to the perturbation to the mitial conditions.
The Jacobian of (16.50) can easily be shown to be

'ﬂ"rr.l
Vixg] = B ' 8xg — Y M H] R (dy; — H;Mg dxg) = 0. (16.51)

i=1

To be able to solve for the zeros of (16.51) we again have to apply an iterative solver for the inverse ol
the matrix-vector equation; however, the difference between the full field and the incremental versions
of 4D VAR is that now we are only having to evolve the increment throughout the assimilation window
which we assume follows the tangent linear approximation we mtroduced in Chapter 13, so long
as the mcrement 1s sulficiently small so that the resolvent does describe its evolution throughout
the assimilation window. This 1s an important feature to note as this now puts a constraint on the
window length. We now require the window length to be of a sufficient size such that the tangent linear
approximation holds.

GOES-R & JPSS Summer Workshop on Theory and Use of
Satellite Data
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16.4.3 INNER AND OUTER LOOPS

As we mentioned over the last two subsections, when we are implementing, or running, incremental
VAR then we can take advantage ol the coarseness of the spatial resolution of the small increment to
reduce the cost of running the tangent linear and adjoint models. We now introduce the loose definition
of the mner and outer loops in incremental VAR,

Definition 16.4 (Inner Loop). The inner loop refers to a lower spatial resolution, and possible
temporal resolution with respect to mcremental 4D VAR, that an iterative minimization scheme for
finding the minimum of the cost function 1s run.

Definition 16.5 (Outer Loop). The outer loop refers to a higher-order spatial and temporal
resolution, where the nonlinear trajectory of the model in the case ol incremental 4D VAR, and the
observation operators and hence the innovations are updated, here this 1s the case for both incremental
3D and 4D VAR. Note: The iterative scheme 1s not normally evaluated at this higher resolution.
Normally only the nonlinear trajectories and imnovations are updated at this resolution.

GOES-R & JPSS Summer Workshop on Theory and Use of

Satellite Data o

7/16/2019



FlG. 16.4

schematics of different possible configurations for the resolution of the inner and outer loops in 3D VAR.
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17.3.1 ERROR MODELING FUNCTIONS

In this subsection we shall consider a few different functions that have been used to determine
the structure and the decorrelation lengths in different atmospheric and ocean operational numerical
prediction centers over the last 30 years. We have seen some of the approaches in the optimal
interpolation chapter as this is a requirement ol these systems, but for the Ol schemes we are only
determining over a finite area, while in the VAR schemes we are solving globally.

Autoregressive models
The first auto regressive model that we present is the second-order auto-regressive model, or SOAR
for short. This function is defined by

cnm = (1 + |Aw])e 1, (17.139)

where here we are defining this model in the vertical and as such dw = — fi: L [E)_I dz and that L(z)
is a local vertical length scale that is a function of pressure.
In the horizontal direction, the SOAR model is defined as

e (snm. Lnm) = (1 4 Snm ) ¢ Tam (17.140)

Lﬂ L

where 5, is some form of distance measure between points on the type of grid being considered, and
Ly 1s the decorrelation length in that specific horizontal direction. A third-order auto-regressive, or
TOAR, as stated in |225], can be defined as

F[c,r}:(1+o{}_|(f(c;rjl+crf(ﬁfr)), (17.141)

GOES-R & JPSS Summer Workshop on Theory and Use of
Satellite Data
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where

fle.r)= (1 +or+ 57-:2) e (17.142)

o 3(1 -|—|‘.I'} —1
L.[_-—\l( ]+ﬁ )c . (17.143)

where L: is the correlation length scale and ¢ is inversely related to this length scale. It is also stated in
[225] that is possible to fit the covariance model to the wind fields from the function for the covariance
for the geopotential height in (17.141) as

—1
F(e.r) = (1 n i) (f(.:,r) + P:iaf' (ﬁr)) . (17.144a)
fle.ry=00+er)e . (17.144b)
where in [225] the values for @ 1s 0.2 and for N 1s 3.

and




Gaussian
An alternative to the auto-regressive models in the vertical is to fit a Gaussian for the decorrelation
which is given by
_ (e

Chm=—¢€ <+ . (17.145)
The reason why people may not use the Gaussian and prefer the SOAR approach is due to the slope,
clfectively the dropoll of the correlations as a function of distance. We can see from Fig. 17.3 that
there is a subtle difference between the two approach where the Gaussian allows for a longer dropolf,
whereas for the SOAR approximation, this model does not allow as far a correlation as the Gaussian

approach does.
The horizontal version of the Gaussian model for the correlation is given by

-

f'g {.‘;'”m'., Lﬂ.r”} = I‘_T_(m) . { I?.].‘q'ﬁ}

GOES-R & JPSS Summer Workshop on Theory and Use of
Satellite Data
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Compact spline
The covariance model here comes from [226], where this a function of compact support that goes

identically to zero with its {irst two derivatives at some finite distance, which is denoted as 2c. If we let
1

!
c= (%{} ) “and r = fj}ﬂ, therefore the correlation model in the horizontal is given by
- “ILAT
S T T
h " - ST
c, =——+ — + — +1, 0=<r=1. 17.147a
b 4 2 8 3 - 'f ‘
s 4 3
r r 3r 5r° 2
= — — et —5r+4——, l=r=12 17.147b
S5+t 3 r+d4—o <r= ( )
=, r=2. (17.147¢)
7/16/2019 GOES-R & JPSS Summer Workshop on Theory and Use of 58
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Plot of the two different covariance models
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