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The discrete version of the Kalman filter first appeared in Kalman’s 1960 paper: A new approach
to linear filtering and prediction problems [244]. The basis of his work was related to problems in
communications and control that are of a statistical nature [244]. The class of problems that Kalman is
referring to are: (1) prediction of random signals; (2) separation of random signals from random noise;
and (3) detection of signals of known forms in the presence of random noise.

Kalman makes reference to the work of Wiener [245], and says that Wiener’s method to approach
problems (1) and (2) above leads to what is known as the Wiener-Hopf integral equation. We shall not
oo into details about this problem here, but we note that it is part of the motivation for Kalman.

Kalman lists a series of paper that have proposed methods to solve the Wiener-Hopf integral
equations as well as many different generalizations, where the objective of these series of papers was
to obtain specifications of a linear dynamic system, which Kalman refers to as the Wiener filter, that
accomplishes the prediction, separation, or detection of a random signal.

Kalman then states four problems for this method, which he shows do not afflict his new filter:

1. The optimal filter is specified by its impulse response.

2. Numerical determination of the optimal impulse response is often quite involved and poorly suited
for machine computation.

3. Important generalizations require new derivations, frequently of considerable difficulty.

4. The mathematics of the derivation are not transparent.
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However, Kalman says that his new approach produces the following:

1. Optimal estimates and orthogonal projections. His approach is to consider the Wiener filter in
terms of conditional distributions and expectations. He shows that all of the statistical calculations

and results are based upon first- and second-order averages; no other statistical data are
required.

2. Models for random processes. In Kalman’s approach, arbitrary random signals are represented as
the output of a linear dynamic system that is excited by independent random signals.

3. The solution of the Wiener problem. Kalman uses the state-transition method, where, as a result
of this approach, the single derivation then covers a large variate of problems. Guessing the state
of the estimation correctly leads to a nonlinear difference/differential equation for the covariance
matrix of the optimal estimation error. The solution of the equation for the covariance matrix starts
at time fp, which is where the first observation is taken; at each later time 7 the solution of the
equation represents the covariance of the optimal prediction error, given observations in the
interval (fp, f). Kalman then states that

From the covariance matrix at time f we obtain at once, without further calculations, the
coefficients, which could be time-varying, characterizing the optimal linear filter.

Given Kalman’s motivation above we now move on to the derivation of the Kalman filter as set out

in [244] and then show a direct statistical-based derivation.

GOES-R & JPSS Summer Workshop on Theory and Use of
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19.1 DERIVATION OF THE KALMAN FILTER

The initial motivation for the derivation of the Kalman filter equations in [244] start with an example:
suppose that we are given a signal x| (f) and noise x2 (f); however, only the sum of the two v (f) = x| (1)+
x7 (f) can be observed. Next, suppose that we have observed and know exactly the values v (fp) .. .., v(1).
Now there are three possible situations with regard to the knowledge of the unobservable value of the
signal at t = #y:

1. If t; = 1, this is a data smoothing (interpolation) problem.
2. If t; =1, this is a filtering problem.
3. If t; = t, this is a prediction problem.

So we now see where the terms “smoothing™ and “filtering” come from [244]. It is stated in [244] that
Kalman is considering all three cases and refers to them collectively as estimation.

Now to the mathematics and probability. We assume that the signal, noise, and their sum are random
processes, where we can determine the probability with which a particular sample of the signal and
noise will occur. Therefore, for any given set of measured values y (fp), . ...y (f) of the random variable
y (1), it is possible to determine the probability of the simultaneous occurrence of various values, x; ().
of the random variable x| (f1). This leads to the conditional probability of

Plxp(t) =xily(to) =yto).....v(0) =y (1) = F(x1). (19.1)

The function F(x;) represents all the information that the measurement of the random variables,
@lRA ey (ty), ..., v (1), have provided about the random variable x| (#;) and is a conditional PDE 6




We now denote a statistical estimate of the random variable, x| (11), as X (f;|t) = X, (f;) = X,. To
be able to arrive at a way of determining x; (f;), Kalman introduces a penalty or loss function, L, that
should be positive and non-decreasing function of the estimation error, & = x| (f;) — X, (1), and the
function should have the following three properties:

L©O)=0. L(e))>L(e2)>0 (e3> ey =0). L(e)=L(—e). (19.2)

The choice for the loss function that Kalman selects is the one that minimized the average loss or
risk, which i1s defined as

E[LCey (1) = X (D] = E[E[L(x) (1) — X (1)) [y (o) - - - .. ¥y (D]].- (19.3)

However, we should note that we can remove the first expectation operation on the right-hand side of
(19.3) as it 1s not operating on X, and such we have

E[LGy () =X () ly (o). ...y (0] (19.4)

Given these assumptions, Kalman introduces the following very important theorem.

Theorem 19.1. Given a loss function that satisfies the conditions in (19.2) and that the conditional
distribution function F (X), defined by (19.1), is symmetric about its mean, F(x —X) = 1 — F (X — x),
and is also convex

Fax) +(1 —2)x2) < AF(x)+ (1 — A) F(x2),

forall xy, xo <X and for 0 < A < 1 then the random variable x7 (1| |t) that minimizes the average loss
given by (19.3) is the conditional expectation

@IRA o200 X (016 = Efxy (1) [y (t0). ...y (D] 195




Connecting Models and Observations

Theorem 19.2. Let {x (1)} {v (1)} be random processes with zero mean. We observe v(tg),....v(1) if
either the random processes are Gaussian, or the optimal estimate is restricted to be a linear function of
the observed random variables and the loss function is L (&) = €2; the x* (t||t) is the optimal estimate
of x(11) given v(ty) .. ... v(1). It is also the orthogonal projection X (t; |t) of x (t;) on Y (¥).

The interpretation of this theorem is that the optimal estimate, given the two conditions in
Theorem 19.2, is a linear combination of all previous observations, and can be regarded as the output
of a linear filter, with the input being the actually occurring values of the observable random variables.

The next step in the derivation of the Kalman filter is to determine the models for the random
processes, and this is where the control theory aspect comes in. Kalman decides that

A random function of time may be thought of as the output of a dynamic system excited by an
independent Gaussian random process.

Kalman now makes the statement that a Gaussian random signal remains Gaussian after passing
through a linear system. Therefore if we assume independent Gaussian primary random sources, and if
the observed random signal is also Gaussian, then we have to assume that the dynamic system between
the observer and the primary source is linear.

Given these assumptions we now introduce the control system

x=M()x+B()ul(r),
(19.10)
v =H(0)x().

dLCIIILE vdld



19.2 KALMAN FILTER DERIVATION FROM A STATISTICAL APPROACH

There is an easier way to derive the Kalman filter equations, which involves following Kalman’s
framework, but without the manifolds and state transition matrices. We start with the usual concept
of the background state, which is the forecast from the previous analysis state as

Xt =My X e, (19.32)

Let x| be the true state at time f, then the background/analysis error is given by

b ! .
-E'? = K!.l:_] — ."'IIlI = E'I;r;_|xa;_||_¢_] . (1933}

We know that the analysis at the previous filtering time has an associated analysis error such that

[} [

a
Xi—1li—1 = X—1—1 T & 1)—1- (19.34)

This means we can write the forecast/background error as

b oagl 10
& _M?‘I—llf—l + Me,_, X{i1

— Me? | + e, (19.35)

GOES-R & JPSS Summer Workshop on Theory and Use of R
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where &™ is the model error given by &' = Hx:_l“_] IIE If we now form the background/forecast
error covariance matrix, we have

E [sf’. (e{’)r] — P/ —E [(Ms?_,“_ Fel) (Mefy, + sg”)r] :
=ME [E?—n:—l (e |;—|)T] M' +E[e]".e]"].

—MPY_ M7 Q. (19.36)

The expression in (19.36) is the same as for the derivation in the last section.

Now, given a predicted/forecasted state, Xy ¢, which is associated with observations up to time
Ik, and assuming that we have received an observation of the state at t = fx—=1, we wish to obtain an
estimate of the state at 1 = ;4| given the observation at 1 = f;4, i.€., Xg4|k+1. We assume that the
estimate is a weighted sum of the prediction and the new observation given by the equation

Xt k1 = KX + Kpgp 1 Vi1 (19.37)

We next seek the gain matrices K” and K, such that the loss function, as Kaman called it, or given a
form that we choose is minimized. Here we are minimizing the conditional mean square analysis error,
which is given by

€kt = XL — Xy (19.38)
A property that we wish for the filter to have is that it is unbiased, which then implies that we require
[+ 1jk+1] = E[xg_1 . This is verified through
E[xk+1jk+1] =E [K’HIXHI ke + K Hxg ) + Ky 6] ] .
=K't 1E [ X 1j] + Kip 1 Hee 1 E [xpp1 ] (19.39)

where the last term in the first line in (19.39) disappears due to the mean of the observational error
being assumed to be zero, i.e., unbiased observational errors.




Connecting Models and Observations

This then implies that our analysis state is given by

X1 k1 = (T — Kt H) X1 e + K1 a1
= X1k + Kt (Y1 — Hep 1 X 16) « (19.44)

where K is the Kalman gain matrix.
We still have two more step to go. The first step is to derive the analysis error covariance matrix,

given the updated analysis state from (19.44), which is denoted as Piic+l|k+l and is defined as

ki =B [Egﬂ (EEH)T |3]=
= E[("k+l — X 1k+1) (Xt —‘-‘ix+1|ﬁ:+1)T]e
—(1- RH,HH,)EH (e{)f] (1 — Kpo Hys ) +K;L.+|IEI[EEL_] (sﬂH)T] K/, |.
= (I — K4 1Hgs1) P;f:r”k (1 — Kep1Heo 1) + Kio 1Ry 1 Ky 1 (19.45)
It is possible to simplify (19.45) as follows:
P =E[(y* - v') (v~ )],
—E[(¥ —v' +K(y—y' —Hy/ + Hy')) (¥ —¢'+K (y—y —Hy/ +Hy')) ],
— (1— KH)E [(¢f _ w*) (}E‘I . w*)T} (1 — KH)" KOK”

= (- KHP/ —P/H'K+ K (HP'H +0) K. (19.46)




We now have to substitute the expression for the Kalman gain matrix into the left multiplication in the
fourth term in (19.46), which then cancels the bracketed component of the fourth term, such that only
the P/H” term remains, which, when combined with K”, cancels with the third term to leave

P — (1 — KH)P/. (19.47)

The last step that we have to do here is to find the expression for the Kalman gain matrix. We know
that we have to minimize the conditional mean square analysis error with respect to the Kalman gain
matrix, which is equivalent to

a o I a !
L(EE—H) = IEiT:Tu E[Ek—|—l (EJH)i 3k+l]*

= min Trace (IE'. [E‘E_H (s‘jﬁr,)‘zﬂ.]),

Kyl

= min Tracc (PEy1sr) - (19.48)
k41
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Therefore, differentiating (19.45) with respect to K; | and setting to zero yields

IL(ef )
IRy

—1
— 2 (1~ K1 Hip 1) P HE |+ 2K R =0,
Now, rearranging to isolate Ky ;. we obtain the following expression for the Kalman gain matrix:

K..—p/  u” [H..p/ H +R..| (19.49
k1 = F e M | P18 e el k+1] - A4Y)

Therefore, when dealing with the Kalman filter in the literature, it is quite often broken down into
two parts: the first part is known as the propagation, forecast, or prediction stage, and the second part
is referred to as the update/analysis stage. As a way to keep track of the different stages of the Kalman
filter, we have provided a summary of these different stages of the Kalman filter in Table 19.1.

w Cam ) | F | el
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Table 19.1 Summary of the Processes Associated With Each Stage of the Kalman Filter
and the Definition of the Equivalent Matrix Operations
Propagation

Create a forecast, a priori, background, state, x;'r xf — }'I,;-xif_J + Bpug

Propagate the forecast error covariance matrix, F;_'r F'J.;!'r = }];L.Pi*_'_l ."hrl;‘-: + Q;
Update

Create observation innovation, dg dy = v — H;L-Ij:_ir

. . —1
Create the Kalman gain matrix, Ki ki = Pfo [H;;PEFHE + Rk}
Update the analysis error covariance matrix, P} P = (I — K H;) PE'F (1 — KHp) + K R K.

GOES-R & JPSS Summer Workshop on Theory and Use of
Satellite Data

14




@IRA 7o

ENSEMBLE-BASED DATA
ASSIMILATION

CHAPTER OUTLINE

20.1
20.2

20.3

204

20.5

20.6

20.7
20.8
20.9
20.10

Stochastic Dynamical Modeling ... e e e aeaa 784
Ensemble Kalman Filter. ... ..o o e e e e e e aneas 785
20.2.1 Perturbed Observations-Based EnKF ... ..o 791
Ensemble Square Root FIers ... e e e e e e e e 793
20.3.1 Localization and INFlation ... e 794
Ensemble and Local Ensemble Transform Kalman Filter ..o 7197
7 I 7197
7 T I 799
Maximum Likelihood Ensemble FIlter ... ... e ar e e aeas 803
PO IR T B o (Tt T A (=] o 804
20,5, 2 ANAIYSIS SE ottt e 805
20.5.3 Lyapunov and Bred Vectors ... e e 807
20.5.4 Hybrid Lyapunov-Bred Vectors ........cooiiii e et e 808
Hybrid Ensemble and Variational Data Assimilation Methods ... 809
20.6.1 @ Control Varniables ... e e 810
20.6.2 Hybrid Ensemble Transtorm PO AS . e 814
20.6.3 Ensembles of 4D VARS (EDA) .. e e 815
o T 815
Ensemble Kalman Smoother ... e e e 818
EnSemble Sen S VY ... et e e et 819
Y1111 11T o 821




20.1 STOCHASTIC DYNAMICAL MODELING

Before we present the derivation of the EnKE, we shall briefly present some of the statistical/stochastic
theory that Evensen uses to justify the EnKF. Following the flow of the 1994 paper, the first stochastic
process we present is Liouville’s theorem, which leads to Liouville’s equations:

Liouville’s theorem and equation

Theorem 20.1. Consider a dynamical system with coordinates q; and conjugate momenta p;, where
i = 1,2,...,N. Then the phase space distribution p (p, q) determines the probability p (p,q)d" gd"p
that a particle will be found in the infinitesimal phase space volume d"d". The associated Liouville
equation governs the evolution of the density in time, where now p (p.q.1) is a function of time and the
equation of the evolution is

N

dp dp dp . dp .

— = — E —q; + —p; | = 0. 20.1
i m"‘j_l(. qi + ——Pi ( )

We now introduce the notion of Brownian motion, which is defined as follows.

@lRA 7/16/2019 GOES-R & JPSS Summer qukshop on Theory and Use of 16
Satellite Data



Definition 20.2. A linear Brownian motion, b (), is a real-valued stochastic process {b(f) : t = 0}
with the following properties:

. h(0) = ~x.

2. The process has independent increments, which is to say that for all times 0 <) <1 < --- < 1,
then the increments b (f,) — b(t,—1), b{ty—1 — lu—2).....b(f2) — b (1) are independent variables.

3. For all t = 0 and &1, the increment b (t + &) — b (r) are Gaussian distributed with expectation zero
and variance 1.

4. The function t — b (1) is continuous.

—

The multivariate version of Brownian motion is referred to as the n-dimensional Brownian motion
and is defined as follows.
Definition 20.3. If by, b, ..., b, are independent linear Brownian motions stated in xy,x2,...,X,,

then the stochastic process {b (1) : t = 0}, where
(b} = (b (1).b2 (1)..... by (1)}, (20.2)
15 called an n-dimensional Brownian motion.

@lRA 7/16/2019 GOES-R & JPSS Summer qukshop on Theory and Use of 7
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Definition 20.4. A stochastic process is said to have the Markov property if the conditional
probability distribution of the future states of the process, which could be dependent on both past

and present states, depends only upon the present state.
Definition 20.5. A Markov process is a stochastic model that has the Markov property. It can be

used to model a random system that changes states according to a transition rule that only depends on
the current state. For a discrete time situation, this process is referred to as a Markov chain.

GOES-R & JPSS Summer Workshop on Theory and Use of 18
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20.2 ENSEMBLE KALMAN FILTER

As we mentioned in the introduction to this chapter, the EnKF was first introduced in the ground-
breaking paper by Geir Evensen in 1994 [£]. An important statement that is made at the start of the
theory of stochastic dynamic prediction section of [8] is still relevant today:

The choice of another interpolation scheme of just different statistical parameters in the interpolation
scheme will produce another initial state resulting in a different forecast even if the same deterministic
model 1s applied. It is not possible to say that the forecast based on any interpolated initial conditions
is right or wrong or better or worse, since each initial state estimate represents an individual member
of an infinite ensemble of possible states that are consistent with the data.

Evensen then quotes a very telling statement from a paper by Epstein in 1969 [256]:

The different analyses will yield different forecasts, even if each were submitted to the same forecast
procedure. If there 1s no way of determining which, if any, analysis is right, and since none is known
to be wrong, there 1s no way of knowing in any instance, which to believe.

@l RA 7/16/2019 GOES-R & JPSS Summer qukshop on Theory and Use of . 2
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Here we shall leave |5] as the equations tor the EnKF are not presented here, but a written
explanation of the procedure is given as mentioned above. The equations for the EnKF first appear

in Evensen and Van Leeuwen’s paper, Assimilation of Geosat altimeter data for the Agulhas current
using the ensemble Kalman filter with a quasigeostrophic model, in 1996 [259]. We start by introducing
the matrix A that is of dimensions n x N, where n is the number of state variables and N i1s the number of
ensemble members, where the geophysical model’s state from each ensemble member is stored. If we

now denote the ensemble forecasts as Ai for time step &k, then we can calculate the ensemble forecast

error covariance matrix at time k, denoted as P;; by

plo (af — ) (& —ﬁi)rf (20.11)

N —1

where I\_l{ is an array that contains the predicted ensemble mean in each column. We should note that
the rank of the error covariance matrix P{ will be less than or equal to the number of members in the

@lRA 7/16/2019 GOES-R & JPSS Summer qukshop on Theory and Use of 20
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¥o = k+H(3-k —H;;-IPJD, (20.12)
vi = Hey, + e, (20.13)
—1
K = PyH[ (HePLH] +Re) (20.14)
We now rewrite (20.12), the analysis equation, as

¢ = yh + Bl by, (20.15)

where B, = HkP’r_, where the rows in By are influence functions, but we have seen them earlier as part
of the PSAS system as the representers for each observation, then the vector by contains the amplitudes
for each influence functions and is found through solving the matrix-vector system

(HAPLH] + Ry ) be =y — Hyy (20.16)

We should note that it is not necessary to calculate the full error covariance matrices in (20.15) and
(20.16), but we can apply the following procedure to evaluate them:

1. Calculate Sy = %Hk (A{ — ﬁ) which is a N, x N matrix, where as always N, represents the
number of observations. .
2. Form the influence functions matrix By = Sy (A{ — ﬁi) (N=1)""

3. Form the representer matrix ﬁk = H;L-PrkHI = HRBE = S;—SI N -1

Therefore to find the coefficient by, we simply solve (20.16), but only have to calculate S, as long as
Ry + Ry is non-singular.
GOES-R & JPSS Summer Workshop on Theory and Use of
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—

[ =E| (v -vi) (¥, - ﬂ_)r , (20.17a)

L

Py =E :(ﬂf—ﬁ) (vi —ﬁ-)r- (20.17b)

=

In the EnKF we do not know the true covariances; this is also true for all forms of data assimilation, but
in the EnKF the true state is replaced by the ensemble covariance matrices that are calculated around
the ensemble mean . Therefore, it is possible to approximate (20.17a) and (20.17b) by

(v —¥i) (Ve - ﬂ.)r] , (20.18a)

Pey = E[ (v —wi) (v -0 | (20.18b)

—
h—

Therefore, in summary the EnKF is an approach that is equivalent to solving the Fukker-
Planck (Kolmogorov’s) equation for the evolution of the probability density function for the error
statistics [261].

@lRA 7/16/2019 GOES-R & JPSS Summer qukshop on Theory and Use of 27
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20.2.1 PERTURBED OBSERVATIONS-BASED EnKF

The starting point of the perturbed observations-based EnKF is the ensemble estimates for the forecast
and analysis error covariance matrices from (20.17a) and (20.17b), where the argument for perturbing
the observations comes from the assumption that there is no representative error involved here. If we
recall that the analysis error covariance matrix from the Kalman filter is defined as

pé — (1 _ KHT) p/, (20.19)

then the analysis update for the EnKF is based upon the equation above; however, if we take an
ensemble of model states such that the error covariances of the forecasted ensemble mean coincides
with the ensemble covariance and then we perform an analysis on each ensemble member, then the
error covariance of the analyzed ensemble mean is given by (20.19) [8]. However, the ensemble
covariance is reduced too much unless the observations are treated as random variables. The reason for
this statement is because in the expression for the analysis ensemble covariance there is no analog to the

term KIE [(d —d') (d - (I’]T} K" = KOKT in (20.19), and as such this leads to spurious correlations
because all of the ensemble members are updated with the same observations. This then results in the
covariance of the analyzed ensemble being

P¢ = (1-KH)P/ (1 - KH)" | (20.20)

where we can see that we have too many (I — KH)T terms. The reason for this is that the original
analysis scheme for the EnKF was based upon (20.17a) and (20.17b), while it should have been based
upon (20.18a) and (20.18b) [260].

Therefore, the basis of the updated version of the EnKF from [260] is now to treat the observations
as random variables by generating an ensemble of observations, where this ensemble is generated from

a distribution with a mean that is equal to the first-guess observations and covariance that is equal to O.

GOES-R & JPSS Summer Workshop on Theory and Use of
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If we now define the new observations as
v, =y +e, (20.21)
where j = 1,2,...,n, we now modify the analysis step of the EnKF as
a _ e
yo = q&jf K, (;J, Hq&jf) , (20.22)

where the ensemble Kalman gain matrix, K, is given by
—1
K, — PLH" (HP{,HT + D] . (20.23)

We can now express the mean analysis state in terms of the mean forecast state, observation, and model
representative as

v =9 ke (y-1y]). (20.24)

Given the expressions above, we can easily show that the ensemble analysis error covariance matrix
is given by

pe— (v —9") (v =¥)'].
= (1-KH)P,. (20.25)
where
v =¥ = -k (v 9 )+ K- (20.26)

An important feature to note here is that the ensemble of the observations do not affect the update to the
ensemble means, since this term is not in (20.24). Another feature to note here is that each ensemble
member evolves according to a model such as

yiT = M (9h) + ddf. (2027)

where dq is a stochastic forcing that represents the model error from a probability distribution with
mean zero and covariance Q. The ensemble covariance matrix of the error in the model equations is
given by




Pl =E [(w“ -9 (v - F‘)T] ,
= (1 - KH)P,, (20.25)
where
v ¥ =K (v -V ) H Ky 7). (20.26)

An important feature to note here is that the ensemble of the observations do not affect the update to the
ensemble means, since this term is not in (20.24). Another feature to note here is that each ensemble
member evolves according to a model such as

pit =m (ﬁf) + dq}. (20.27)

where dq is a stochastic forcing that represents the model error from a probability distribution with
mean zero and covariance Q. The ensemble covariance matrix of the error in the model equations is

given by
Q=E [(dq‘f ~dq") (dg* - a’q")r] . (20.28)
The ensemble mean then evolves according to the equation
¥k+l ~ M (*E..‘_;:)+
~M (?“) + NLT. (20.29)

@lRA 7/16/2019 where NLT stands for nonlinear term if A is nonlinear. 25
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20.3 ENSEMBLE SQUARE ROOT FILTERS

The motivation for the derivation of the EnSRE, as we just mentioned, was firstly to avoid the sampling
error caused by perturbing the observations, which was to avoid reduction of the ensemble covariance
being too severe, but secondly to find a formulation of the ensemble Kalman gain matrix such that the
analysis error covariance matrix for the ensemble satisfies

P’ = (I — KH)P? (1 — KH)" + KRK” = (1 - KH)P”. (20.30)

If we recall the work of [260], then we have that if all of the members of the ensemble are updated
with the same observations using the same gain matrix, then the covariance of the analyzed ensemble
is shown to be

PY = (1— KH)P"(1— KH)" . (20.31)

The challenge now is to define an approximation K for K from the ensemble such that when K is
substituted into (20.31), we obtain a form similar to that on the right-hand side of (20.30).
It is shown in [263] that an expression for K that satisfies the required property is given by

1

K = PPH7 HP’HT + R -1 HP’HT + R) + VR : : (20.32)
(v )

We have to note that the square roots of the matrices in (20.32) are not unique, they can be computed
in different ways, say with a singular vector decomposition or through a Cholesky factorization.
If we now consider an individual observation, then HP’H” and R reduce to scalars and the equation

(1 - KH) P (1 - KH) P’ = (1 - KH) P”, (20.33)
becomes

HP’HT

mﬁf{ —KK" —KK" + KK = 0. (20.34)
_|_




If we now set K = a K, where « is a constant, then it is possible to factorize out the KK’ term, which
results in a quadratic equation for & such that the solution that is between 0 and 1 can be shown to be

—1

/| R
=1+ /=] - 20.35
* ( ! HP”H+R) (205

Thus the mean and departure from the mean are updated independently according to
[ —— -
K=P'H" (HP’HT +R)
=% +K (;? - Hi’f') .

F F e F
x? = xP —K(Hxh).

where K = K. We should note that the covariance matrix here is the ensemble-based approximations.

One important feature of the EnSRF is that it processes the observations sequentially, which makes
it possible to implement the covariance localization. This improves the analysis while preventing
filter divergence in small ensembles. A summary of the EnSRFs up to 2003 can be found in
Tippet et al. [248].

In the theory that we have just presented, we saw one of the problems associated with the EnKF,
which was rank deficiencies. But there is also another problem associated with the sampling of the
ensembles. This undersampling can lead to smaller scales not being resolved correctly; we saw this in
the VAR subcomponent chapter where we could dynamically excite spurious gravity waves.

While the EnKF does not generate guaranteed balanced initial conditions unless some constraint is
applied, there is the problem coming from the undersampling. In the next section we shall introduce a
couple of techniques that have been introduced to compensate for the undersampling because, as with
the balance constraints in VAR, it is possible for the filters to diverge. These techniques are referred to
as localization and inflation.
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In Houtekamer and Mitchell’s 2001 paper A sequential ensemble Kalman filter for atmospheric data
assimilation [264], they introduce an ensemble error localization so as to be able to filter the forecast
error covariance matrix of the small background-error correlations that come from using too small an
ensemble. They achieve this localization by applying a Schur product, which is also referred to as the
Hadamard product, which 1s an element-by-element matrix product, of the covariances of the forecast
error that has been calculated from the ensemble and a correlation function that has local support.

Sspecifically, Houtekamer and Mitchell redefine the ensemble Kalman gain matrix K as

K — ((p o Pf) HT] (H (p o Pf) HY + R)_J ._ (20.36)
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where it 18 possible to interchange the order of the torward interpolation and the Schur product such that

k — (p ° (Pf HT)) (p o (HPf HT) 4 R)_I , (20.37)

where
N
PIHT = o 3 (vi =9 (] —my).

HFIHTE—i(Hy}{—HE ) (ry! —ny’).

The matrix p is a relatively broad function. For the study presented in [264] the authors use a fifth-
order compactly supported piecewise rational function which comes from [226], and 1s also used in
the work in [265]. There are a large suite of different compactly supported two- and three-dimensional
correlation functions presented in [226] and the reader is referred to that paper for more details about
the different piecewise functions.

Another reason for the localization in either observation space and/or ensemble covariances is to
prevent what is referred to as filter divergence. The first instance of filter divergence, according to
[265]. occurred in [263]. Filter divergence is the process that the ensemble progressively ignores the
observations more and more in successive cycles, which then leads to a useless ensemble. In [265] the
authors state that the cause of the filter divergences is due to using the ensemble to produce reduced rank
representation of background error statistics, or, as we have been calling them, forecast error statistics.

TUULITIN JI I SUllHici V\IUII\DIIU Vil 111TV1 aliu uUodcT vi
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20.4 ENSEMBLE AND LOCAL ENSEMBLE TRANSFORM KALMAN FILTER

In this section we shall introduce two versions of the EnKF that are used quite extensively today.
The first filter we consider is the ETKE The ETKF first appeared in [272]; however, here we shall
summarize the derivation from Bishop et al. [273], where the derivation is a bit easier to follow.

20.4.1 ETKF

As always we are going to start with one of the equations of the Kalman filter; this time we are starting
with the analysis error covariance matrix as

1

K
PY = ] Dk (1) — X (1) Ok (1) — X (1) = XiX] . (20.38)
k=1

X (£ —x(1;)

~K—1

where the columns of X are given by . Therefore according to (20.38) the forecast error matrix

at fiy is given by

Pl | = ZenZ] | = X ToTEX]

T (20.39)

where at the initial time then Tp is equal to the identity I. Thus at any later data assimilation time ;4.
we have

f ) T

PI+m = Zr—l—rnzj_,_ms

I Xim (20.40)

= K:'—I-mTHm— I T;_|_m_j

where T, 1s a K x K transformation matrix that is generally not equal to the identity matrix.
It is now the goal of [273] to be able to write the ensemble-based analysis error covariance matrix
in the form

_I re
pe _p/ _p/uT (pr ' + R) 7T’y (20.41)

for the transformation matrix T given that the forecast error covariance matrix is P/ = 2/Z/"




Now the next goal of the EnKFs is to avoid the size and ill-conditioning problems associated with the
reduce rank approximations. With respect to the ETKF they first state that we introduce a normalized

observation operator a H = R—2H. This enables us to write
—1 —1
P/HT (HP'HT +R) " HP = P/H (R™2 (RZHP'H'R ™2 +T)R72)  HP/,
o [ o —1 ~
_p/aAT (pr i’ + I) T) (20.42)

where I is of the dimensions of the number of observations. We now apply a eigenvector decomposition
to (20.42) using the property that the eigenvectors of HP/H' are equivalent to those of HP/H' + 1,
which implies that

o s —1
(pr T [) — EC(T¢+1)"ES, (20.43)

where the p columns of E° contain the complete set of orthonormal eigenvectors of HP/H” and the
diagonal matrix I' contains the corresponding eigenvalues. We only require the eigenvectors that are
not in the right null space of P/H”. Since

p T — 77 fT (20.44)

then only the eigenvectors of HP/H7 that contribute to the analysis error covariance matrix defined by

(20.41) are those that can be written as a linear combination of the column vectors of HZ/ . However, we

should note that not all of the eigenvectors are linearly independent because the sum of the K ensemble

perturbations from which they are derived is equal to zero. Therefore, we seek the set of eigenvectors
@IRA 7752 that are linearly independent to form the vector space.




After some manipulations that are shown in [273], we arrive at the three main equations for the
ETKF that are given by

P/HT (FP/HT + 1)_J Hp/ —z (“)cr@+1n-' 7z (). (20.47)
x4 (1) — ¥ (1) = M (.@) P/HT (ﬁPf T 1)_' (R—%}- _ Ay {r"*‘]) | (20.48)
() —% () =2 crz (@ +n'E7 (R—%}- — HY {rﬂ]) , (20.49)

where M is the numerical model and y is the vector of observations.
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Localized Ensemble Transform Kalman Filter
LETKF

1. Advance the analysis ensemble of global geophysical states to the next analysis time. This is a new
background ensemble of global geophysical states.

2. Associate a local region with each grid point and, for each local region and each member of the
background ensemble, form vectors of geophysical state information in that local region.

3. For each local ensemble member vector obtained from the previous step, calculate its perturbation
from the background ensemble mean, and project these perturbations on to a lower dimensional
subspace that best represents the ensemble in that region.

4. Perform the data assimilation in each of the local low dimensional subspaces, obtaining analysis
mean and covariance in each local region.

9. From the local analysis mean and covariance, obtain a suitable local analysis ensemble of local
ceophysical states.

6. Use the local analyses obtained in step 5 to form a new global analysis ensemble.

1. returnto 1.

@lRA 7/16/2019 GOES-R & JPSS Summer qukshop on Theory and Use of 33
Satellite Data




The next step that Ott et al. [274] move on to is the assimilation step, which is to minimize the
incremental 3D VAR cost function, but projected into ensemble apace. They linearize the nonlinear
observation operator about the mean ensemble hdckgmu nd state ‘tmﬂ., where this state 1s assumed to be
quite close to the true state, that they denote as x} . which is the local analysis. We shall not go into
all of the details about the minimization but will present the important equations:

b (xf,) ~ 0 (%) + Hin AXG, (20.62)
ﬂxﬁm — xgm - Eﬁm* (20.63)
| 3 foy T
J {ﬂ"mn — ) (ﬂiﬁm] (Pﬁm) ﬁﬁm
L b 1 b
2 (Hﬂm ﬁl’imn + humn ( mn) — }'ﬂm) R (Hmnﬂ A1 + hmn (Km) — }’mﬂ) : (2{}-5'4}
where the superscript - represents that that matrix has been pmj&c:tecl by Qu, into the 5, subspace.
Now if minimizing the cost function in (20.64), then the state X9, is the most probable state, which
is equal to
R = Pl Hl R (vmn — b (351 ) (20.65)
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Maximum Likelihood Ensemble Filter (MLEF)

20.5.1 FORECAST STEP

The MLEF comprises of two different stages. The first stage is the forecast step and is concerned with
the evolution of the forecast error covariances. The starting point for this step is from the evolution
equation of the discrete version of the Kalman filter [257]. Therefore, we have that

P/ (k) = My_ 1 Pa(k—1)M]_,, +Qk— 1), (20.78)

where P/ is the forecast error covariance matrix, k is the time index, M is the nonlinear model
evolution operator, and q is the model error matrix which is assumed to be normally distributed. For
the purpose of this work this is assumed to be zero.
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A factorization of P/ into a square root form can be defined as

1 T 1T
P/ — mp, M = (MP&) (MP;}) =P/P/. (20.79)

I
- . . 5 '
The structure of the square-root analysis error covariance matrix, P, 1s

Pl

| P2
P;i=(p p2 ... ps) wherep;= : . (20.80)

PN.i
where N is the number of state variables and § is the number of ensemble members with the assumption
that § < N.

Upon expanding (20.80), the square root forecast error covariance matrix, P’JI;" , can be expressed as
P2 (b by ... bs).
i = M(xp_g +pi) — M(x_p) = Mp,

where x;_| is the analysis state from the previous assimilation cycle, which is found from the posterior
analysis PDF [5]. Therefore the MLEF evolves the square root analysis error covariance matrix through

(20.81)

the ensemble members.
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20.5.2 ANALYSIS STEP

The second step in the MLEF is the analysis step which involves solving a nonlinear cost function,
similar to that of [5], which is based on a Gaussian assumption for the background and observational
errors.

The associated cost function is defined in terms of Py, although this matrix is never calculated or
stored in the process of the filter. This results in

J(x) = % (x — xp)T Pfj (x — xp) + % (v—hx) R (y —h(x)), (20.82)

where y is the vector of observations, h is the nonlinear observation operator, R is the observational
covariance matrix, and x; is a background state, such that xp = M (x;_1).

To find the minimum of (20.82), we introduce a change of variable through a Hessian precondi-
tioner, defined by

| .
x—xp =P (1+C) 2 &. (20.83)

where & is our vector of control variables, defined in ensemble subspace, and C is the Hessian matrix

of (20.82), which is

T I | 13T I |
C=P/ H'R'HP? = (R_i HP'JF) (R_E HP}), (20.84)

where H is the Jacobian matrix of h evaluated at xp.
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It may be the case that the observation operator is nonlinear, difficult to differentiate analytically, or
even discontinuous. To overcome this problem we use information from P/ to approximate the square
root of C, componentwise, as

1
zi — (R—EHPJ,%)_ _ R~ Hb,
i
~R™? (h(x + b;) — h(x)). (20.85)

It is shown in [278] that the MLEF is a non-differentiable minimization algorithm due to these types of
approximations.
A new matrix Z is now defined such that

Z=(zy 2z, ... 15). (20.86)

The definition above allows C to be written as C = ZTZ* i.e.,

T T T
Z|Z| I]IQ ZIZ_S;
T T T
ZaZ| EAZ2 -+ I ES
c=1 "2 2 2 (20.87)
T T T

To accomplish the inversion of (I + C), required in (20.83), we apply the spectral theorem for
Hermitian matrices [279]. The theorem allows for an orthogonal eigenvalue decomposition of C in
the form

C=VAVT,

where V is a matrix whose columns are orthogonal eigenvectors, and A is a diagonal matrix containing
the eigenvalues of C.
The final point about the MLEEF is the updating of the square root analysis error covariance matrix by

| I T
P, = P} (I+C (xopt)) 2, (20.88)




@IRA 7o

Hybrid 3D VAR

J) =+ (x—ub) B! (x ) ~(y—Hx)'R~! (y — Hx), (20.95)

where the background error covariance matrix B is decomposed in the form B = SCST, where S is

the transform from spectral coefficients to grid points and C is the diagonal matrix of variances of the
spectral coefficients and seek the analysis increments, x? — x”, such that

(1 + EHTR—'H) (x“ _ x*’:‘) BH'R™! ( — Hx ] (20.96)

The hybrid EnKF-3D VAR scheme uses a weighted mean of B = SCS and P’ derived from the
ensemble, which is fully time dependent and spatially inhomogeneous, such that

B—(l —a)P’ +ascs’. (20.97)

By changing the value of @ from O to 1 then the analysis changes from using only flow-dependent
ensemble-based error covariances to using the original 3D VAR covariances.
The advantages of the hybrid approach as set out in [285] are:

1. The hybrid scheme allows the user to evaluate combinations of 3D VAR and ensemble-based
background statistics rather than relying strictly upon one or the other.
2. Ensemble-based statistics alone will be rank deficient and subject to sampling errors, and as such

blending in the 3D VAR static statistics may fill out the covariance matrix and ameliorate some of
the sampling error problems.
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Hybrid 4D Var or En4DVAR

20.6.1 o CONTROL VARIABLES

The « control variables were introduced at the United Kingdom’s Met. Office in the late 1990s and the
theory behind them was mentioned in Lorenc [286]. This technique has been implemented operationally
at the Met. Office as well as in the National Center for Environmental Prediction (NCEP) initial hybrid
system [287]. We shall consider the approach set out in Clayton et al. [288]. The motivation of the
hybrid approach at the Met. Office was to capture the errors of the day which are the short-range errors,
while the climatological or static covariance matrix of the variational component captures the large-
and longer-scale errors.

For the ensemble component of the hybrid system at the Met. Office they run what is referred to as
the Met. Office Global and Regional Ensemble Prediction Systems, or MOGREPS, which comprises

of an ETKEF as described in Wang et al. [289]. The global version of the ensemble prediction system is
called MOGREPS-G.

An important feature of the hybrid system at the Met. Office is that it is completely coupled. This
coupling comes from:

1. the analysis perturbations for the ensemble system are generated by centering around the
deterministic analysis from the 4D VAR system; and
2. the 4D VAR system is dependent on forecast data from the ensemble system.
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At the start of each 4D VAR window the necessary ensemble forecast fields are taken from
MOGREPS-G and interpolated to the analysis grid of the 4D VAR system. Note that the ensemble
members are run at a lower resolution to both the analysis scheme in the 4D VAR and the global
forecast model as well. As we have seen with the other ensemble filters, the differences between the
ensemble members fields and the ensemble mean are taken, scaled by —— , and stored in an array W

VE—1
such that
P, —ww’ (20.99)

As with most ensemble-based approximations to the error covariance matrix, the approximation in
(20.99) i1s an undersampling of the errors and as such the Met. Office applies a localization matrix C
such that

B, —P/oC. (20.100)

Therefore, given the static, climatological background error covariance matrix from the 4D VAR
system, the hybrid system seeks to implement a hybrid background error covariance matrix that is a
linear combination of the static and flow dependent background error covariance matrices as

B = £2Bc + A2Be. (20.101)

where ﬂ? and ,BE are scalar weights. This is where the & control variables come in, or implementing an
extended control variable method as it is referred to as in [288].

@lRA 7/16/2013 Satellite Data 41




The process of implementing the « control variable approach starts with the decomposition that
the Met. Office implements for its control variable transform. The Met. Office uses an incremental
4D VAR system that involves increments denoted as édw, and that there is a control variable v such that
dw = Uv, where U is the square root matrix of B, which are the inverses of the transforms T that make
the control variables uncorrelated and have approximately unit variance. The transforms associated with
the T matrix are referred to as the T-Transforms and they comprise of

T =T,T,T,, (20.102)

where T}, is the transform to combine some fields to reduce the number of fields: T, is the projection on

to approximately uncorrelated vertical modes; and T}, is the projection on to global spherical harmonic
functions.

The U transform is made up of the approximate, or exact, inverses of the T transforms, such that

U=U,U,U,. (20.103)
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Thus the increment dw is related to the static and ensemble components through

K
dw = BUpUyUpv + B Y Wy oy, (20.104)
k=l

where w'; is the ensemble error mode.
Given the definition in (20.104), then the incremental 4D VAR cost function becomes

K
1
J (Vg @, @) = V43 afCop+Jo+ I (20.105)
k=1

where the Jy term is the observational component of the cost function, while J. is any constraint that
we wish to enforce on the minimum of the cost function. It is possible to improve the conditioning of
the minimization of the cost function in (20.105) by introducing an « control vector v* which is the
concatenation of the K vectors v{ such that

ay = UV, (20.106)

I
where U¥ = C2.
Therefore, the cost function in (20.105) now becomes

1

J(vv) = 5v Ty 4~ {1 )T (V) +Jo + Je. (20.107)
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NDENnVAR
20.7 NDEnVAR

According to Lorenc [301], the data assimilation systems that have the designate NDEnVAR, where the
ND stands for number of dimensions, i.e., 3D or 4D, are variational-based data assimilation systems
that only use ensemble covariances, but in the four-dimensional case they do not use the adjoint of the
tangent linear models.

A clear mathematical and algorithmic description of the NDEnVAR systems can be found in
Desroziers et al. [302], but we shall present the brief description from Lorenc et al. [303].

For this section we shall consider four-dimensional trajectories, which can be seen as a sequence
of three-dimensional states describing the evolution over a time window. A standard that has been
introduced to represent these 4D fields in the atmospheric community is to denote the vector with an
underline. Therefore let x” be the background trajectory. We then have the expected error covariance of
x” as P. This defines a Gaussian PDF for the 4D increment 8x:

8x ~ G(0,P), (20.122)

which gives the probability that x” + 8x is the true trajectory. This means if we follow the usual
assumptions for incremental 4D VAR, then we have to find the minimum of the following cost function:

1 1 T
I = o P ax 4 o (y—y) RT (v -y°). (20.123)

where for the observational component in (20.123), 3-'“ is the observations in the time window, and y is
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vvvvvv

y-H (f' + 55) : (20.124)

where H includes time, horizontal, and vertical interpolation, followed by potentially nonlinear
calculations.

As we have seen, the incremental 4D VAR system replaces the true state x’ by x” + 8x and then
makes the assumption

M (xb + 51)
5

(xb) + x, (20.125a)

M
Mébx. (20.125b)

I
il

Applying a reduction of the control variable technique means that the 4D covanance matnx, which 1s
implicit inside of 4D VAR, 1s given by

P=MPMT, (20.126)

where P is the 3D error covariance matrix at the beginning of the window. If we apply the T and U
transforms as we showed earlier in the summary of the Met. Office’s En4D VAR system, it 15 possible
to rewrite the cost function in terms of the control variables v such that dx = MUw,

I 1
R R D -1 o -
Jw= w3 (- )R (y-y°) (20.127)
The associated 4D error covariance matrix is given by

P=MuUTMT, (20.128)
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Connecting Models and Observations

Ensemble 4D VAR implicitly uses localized ensemble error instead of the chimatological covan-
ance B:

P=CoXxxT, (20.129)

where X = [fp X3, ... ,1{.,4] 18 the array of normalized ensemble perturbations valid at the beginning of
the window. We apply the & control variable techmque

x=M) aoxj. (20.130)
k

Each e is smooth using the technique ety = U”v{, such that
C=u ()’ (20.131)

All of the v are concatenated into a single vector v so that the background component of the cost
function is transformed into

| ! T
EWT =3 gvﬁ (Vi)' (20.132)

The important feature to note here is that the error covariance matrix now becomes

P= M(CaKJﬁT}MT, (20.133)
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Hybrid 4D VAR is constructed through a weighted average combining the traditional 4D VAR with
the ensemble 4D VAR above, such that

Sx=M|BUv+fe ) Uw{ox|. (20.134)
k

Therefore, the error covariance matrix for the hybrid 4D VAR 1s given by
P=M (ﬁfﬂ +82Co xﬂ) M’ (20.135)

We should note here that the square of the hybnd weights are in the defimition above, and assuming that
they both give independent valid estimates of P, then we obtain the condition that ,ﬂf + ﬁf = 1.
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ADENVAR — Four Dimensional Ensemble VAR

The approach presented here is similar to that of Ensemble 4D VAR (En4DVAR) but was
designed to AVOID the TLM and adjoints. 4ADEnVAR extends to four dimensions for all the
En4DVAR equations, but now applying them to the sequence of states in trajectories rather
than at the single time at the beginning of the window. This implies that we can use an
implicit localized ensemble covariance

P=CoXX', (20.136)

f

where X = [51,;’1, . }_qur] contains the normalized ensemble perturbations valid through the window

X, —X . : ; . . 5 .
as X = :'H This method uses the @ control variables but now in the form of e ;, which define the
W

local weight given to each perturbation trajectory, so that

5x ZE&”E:.- (20.137)
K

Since each x; 15 a normalized difference of nonlinear forecasts, then (20.137) 1s a linear combination

of nonlinear forecasts, using localized weights. It 1s a linear function of the e, s and hence 1s a different
kind of linear model to that in (20.125b).
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Since each x;, is a normalized difference of nonlinear forecasts, then (20.137) is a linear combination
of nonlinear forecasts, using localized weights. It 1s a hinear function of the a;s and hence 15 a different
kind of linear model to that in (20.125b).

In 1ts imnal implementation of 4DEnVAR, the Met. Office does not allow for the vanation in time
of the a; s, but instead uses a persistence forecast I such that @, = le;. A smoothing technique 1s stll
applied to the o control variables. Therefore the 4D incremental trajectory 1s given by

5x = BIUXVE + fe ) TU“W! o x, (20.138)
k

and the implicit covariance still contains neither the square of the weights and 1s given by
P = plIBI" + pZCo XX, (20.139)

where we can clearly see that the expression in (20.139) neither contains the tangent linear model nor
the adjoint.

@l RA 7/16/2019 GOES-R & JPSS Summer Wgrkshop on Theory and Use of 49 (.
Satellite Data



While this appears to be a great alternative to 4D VAR, most results have shown that while
4DEnVAR beats the static 4D VAR and the hybnd 3D VAR, it does not appear, at the nme of wnting, to
be able to beat En4D VAR. One possible reason, as mentioned in [303], 1s the fact that the 4DEnVAR

does not create very well-balanced increments, but another reason could be the fact that persistence of
the static component through the window is not a good choice as it is hard to believe that the large-
scale motions would have the same error covaniances throughout the length of the window, given the
fact that incremental 4D VAR evolves the static component of the background error covanance matrix
throughout the window. We know that even the static 4D VAR evolves the static covariance matrix
through the Hessian of the cost function. There is a detailed study performed with the NCEP Global
Forecasting System with different versions of En3D VAR, EndD VAR, 3DEnVAR, and 4DEnVAR in
Kleist and Ide [304,205], and we recommend the reader to these papers for a more detailed explanation
of the performances that they discovered of these different configurations of the hybnd systems.
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Scheme

4D VAR
EnVAR
EndDy VAR
4DEnVAR

Increment
dx = Méx
OX = MZ&'I#‘}E.J&
5x = M (BUv + B 3, U"vg o xy )
8x = B AUV + B 3 L IU" o x;

Table 20.1 Summary of the Increments and the Analysis Covariance
Matrices for Each Data Assimilation Scheme

Analysis Covariance Matrix
P=MPM'

P =M (A2 + pICoXXT) M’
P=g8-IBI' + g2C o XX'
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