

Data Processing and Error Analysis System (DPEAS)

User’s Guide for DPEAS version 3.012
(Revised December 2011)

Prepared by

Andrew S. Jones, Stanley Q. Kidder, and John M. Forsythe

Cooperative Institute for Research in the Atmosphere (CIRA)

Colorado State University

Fort Collins, CO 80523-1375

DPEAS User’s Guide i

CSU/CIRA Dec 2011

TABLE OF CONTENTS

TABLE OF CONTENTS .. I

LIST OF FIGURES .. IV

LIST OF TABLES .. IV

LIST OF ABBREVIATIONS ... V

1 INTRODUCTION... 1

2 OVERVIEW OF THIS DOCUMENT .. 2

3 INSTALLATION AND CONFIGURATION .. 3

3.1 SYSTEM REQUIREMENTS FOR DPEAS ... 3
3.2 INSTALLING DPEAS .. 3

3.3 CONFIGURING DPEAS FOR PARALLEL MODE OPERATION .. 4
3.3.1 Batch Job Server (BJS) Setup ... 4

3.3.2 Resource File Configuration... 4

4 USING DPEAS .. 7

4.1 SCRIPT FILE DESCRIPTION ... 7

4.1.1 Intrinsic Routines .. 8
4.1.1.1 Archive ... 8

4.1.1.2 Composite .. 9

4.1.1.3 Composite_Weights ... 9

4.1.1.4 Copyfile.. 10
4.1.1.5 Deallocate_Hdfeos ... 10

4.1.1.6 DPE_Code_Check ... 10
4.1.1.7 DPE_Mirror ... 11
4.1.1.8 DPE_Mode_Asynchronous.. 11

4.1.1.9 DPE_Mode_Sychronous .. 11
4.1.1.10 DPE_Requirements .. 12

4.1.1.11 DPE_Slave ... 12
4.1.1.12 DPE_Test_Call .. 12
4.1.1.13 DPE_Test_Hdfeos.. 12
4.1.1.14 DPE_Test_Load ... 12
4.1.1.15 DPE_Write_Data_Structure ... 13
4.1.1.16 DPE_Write_DB_Statistics ... 13
4.1.1.17 DPE_Write_Mirror_Sets.. 13

4.1.1.18 DPE_Write_Variables.. 13
4.1.1.19 Filename ... 13
4.1.1.20 Get_Files .. 14
4.1.1.21 Read_Hdfeos .. 16
4.1.1.22 Remap .. 17
4.1.1.23 System .. 17
4.1.1.24 Time ... 18

DPEAS User’s Guide ii

CSU/CIRA Dec 2011

4.1.1.25 Write_GIF .. 18
4.1.1.26 Write_Hdfeos ... 18
4.1.1.27 Write_Ramdas.. 18

4.1.1.28 Write_Text ... 18
4.1.1.29 Write_TIFF .. 19
4.1.1.30 WWW_Update ... 19

4.1.2 Format Translator Routines ... 20
4.1.2.1 AGRMET2HDFEOS ... 20

4.1.2.2 AMSU2HDFEOS .. 20
4.1.2.3 AVHRR2HDFEOS .. 20
4.1.2.4 GDAS2HDFEOS ... 21
4.1.2.5 GFS2HDFEOS ... 21

4.1.2.6 GOES2HDFEOS.. 22
4.1.2.7 MIRS_IMG2HDFEOS .. 22

4.1.2.8 OLS2HDFEOS .. 22
4.1.2.9 QMORPH2HDFEOS ... 23

4.1.2.10 SSMI2HDFEOS ... 23
4.1.2.11 SSMIS2HDFEOS .. 24
4.1.2.12 SSMIS_EDR2HDFEOS .. 24

4.1.2.13 SSMT22HDFEOS.. 25
4.1.2.14 TMI2HDFEOS ... 25

4.1.2.15 VIRS2HDFEOS ... 25
4.1.2.16 WINDSAT2HDFEOS.. 26

4.1.3 Application Specific Routines ... 26

4.1.3.1 AMSU2McIDAS ... 26

4.1.3.2 Apply_RR_Correction ... 27

4.1.3.3 Apply_TPW_Correction .. 27
4.1.3.4 Bsmooth ... 27

4.1.3.5 BTPW_Land_Blend ... 28
4.1.3.6 Copy_NESDIS_TBUS_File .. 28
4.1.3.7 Compute_TPW_Percent .. 28

4.1.3.8 Create_TPW_Correction.. 28
4.1.3.9 GOES_SNDR_TPW_Merge.. 29
4.1.3.10 GPS_TPW_Interpolate .. 29
4.1.3.11 RR_Statistics .. 29
4.1.3.12 Write_McIDAS .. 29

4.2 KEY DPEAS STRUCTURES .. 30

4.2.1 DPEAS Memory Data Structure ... 30
4.2.2 DPEAS Directory Structure .. 30

4.3 DPEAS PARALLEL PROCESSING .. 32

4.3.1 Running DPEAS in Parallel Mode ... 32
4.3.2 Aborting a Parallel Mode Job with the Batch Job Server Client 34

4.4 LOG FILES .. 34
4.4.1 File I/O Messages ... 35
4.4.2 Error Handling ... 35

5 DPEAS ADVANCED FEATURES ... 36

DPEAS User’s Guide iii

CSU/CIRA Dec 2011

5.1 PARALLELISM .. 36
5.1.1 Synchronous Parallelism .. 36
5.1.2 Asynchronous Parallelism .. 36

5.2 DATA MIRRORING ... 36
5.3 FAULT RESILIENCE .. 37

6 APPENDIX A: “A DYNAMIC PARALLEL DATA-COMPUTING ENVIRONMENT

FOR CROSS-SENSOR SATELLITE DATA MERGER AND SCIENTIFIC ANALYSIS”

APPENDIX A: “A DYNAMIC PARALLEL DATA-COMPUTING ENVIRONMENT FOR

CROSS-SENSOR SATELLITE DATA MERGER AND SCIENTIFIC ANALYSIS” 39

7 ACKNOWLEDGEMENTS ... 39

DPEAS User’s Guide iv

CSU/CIRA Dec 2011

LIST OF FIGURES

FIGURE 1: DPEAS PARALLELISM ... 33

FIGURE 2: MONITORING PARALLEL MODE DPEAS RUNS WITH THE BATCH JOB SERVER

CLIENT .. 33

FIGURE 3: DPEAS DATA PROCESSING FLOW .. 34

FIGURE 4: NORMAL MODE OF THE DPEAS HARDWARE CONFIGURATION 38

LIST OF TABLES

TABLE 1: DPEAS ERROR LEVELS ... 35

TABLE 2: DPEAS DATA MIRRORING BEHAVIORS ... 37

DPEAS User’s Guide v

CSU/CIRA Dec 2011

LIST OF ABBREVIATIONS

AMSU Advanced Microwave Sounding Unit

ASCII American Standard Code for Information Interchange

BJS Batch Job Server

CD-R Compact Disk-Recordable

CIRA Cooperative Institute for Research in the Atmosphere

CPE Cross-Sensor Processing Environment

CPU Central Processing Unit

DB Database

DOS Disk Operating System

DPE Data Processing Engine

DPEAS Data Processing and Error Analysis System

EOS Earth Observing System

F90 Fortran 90

GIF Graphics Interchange Format

HDF Hierarchical Data Format

HPF High Performance Fortran

HVIOS HDF-EOS Virtual I/O Subsystem

I/O Input/Output

McIDAS Man computer Interactive Data Access System

MB Megabyte

NESDIS National Environmental Satellite, Data, and Information Service

NRTRFS Near Real Time Replication File Subsystem

P2P Peer-to-Peer

RAMDAS Regional Atmospheric Model Data Assimilation System

SSM System State Manager

TBUS TIROS Bulletin United States

TIFF Tagged Image File Format

TPW Total Precipitable Water

UNC Universal Naming Convention

WWW World Wide Web

DPEAS User’s Guide 1

CSU/CIRA Dec 2011

1 INTRODUCTION

The Data Processing and Error Analysis System (DPEAS) is a dynamic, parallel data processing

system for the merger and analysis of data from multiple satellite sensors. DPEAS was created to

overcome the inherent difficulties of working with large volumes of multiple data formats.

Among these difficulties are:

 Data from different satellite sensors come in different formats. Thus, different code must

be written for each combination of sensors that is desired.

 Satellite data are voluminous both in total number of bytes and in the number of files that

must be processed, including backup and archival.

 The computational burden is not uniform. Parallel processing of the data to avoid

processing bottle necks is highly desirable.

 Recoding the system for each new application is far too costly and time consuming.

DPEAS has five main aspects designed to overcome these difficulties:

1. The memory-resident data structure is HDF-EOS (currently HDF-EOS version 2.5). All

data are translated on input into the HDF-EOS structure, and then processing continues.

On output, a simple subroutine call writes the output data in HDF-EOS format. Other

output formats are accomplished with format translators. Therefore, processing code is

independent of input or output data format.

2. A large number of utilities are included in DPEAS for the handling of satellite data. Due

to the common data structures, most of these routines are generic and can operate on

many different satellite data types. This improves the reusability of the advanced satellite

processing codes.

3. DPEAS automatically assigns computational tasks to free nodes on a cluster of computers

to parallelize the data processing.

4. DPEAS has a number of fault-tolerant features to enable the parallel computing system to

reroute data flows dynamically in the event of a hardware failure.

5. DPEAS is run using a scripting language, which is a subset of Fortran 90 (F90). All

operations are accomplished through subroutine or function calls. Thus the operational

data processing is easy to monitor and change.

The original design and development of DPEAS is detailed in Jones and Vonder Haar (2002),

which appears in Appendix A. The remainder of this document describes how to use DPEAS.

DPEAS User’s Guide 2

CSU/CIRA Dec 2011

2 OVERVIEW OF THIS DOCUMENT

This DPEAS User’s Guide details how to install and use the current capabilities of DPEAS. A

companion document, the DPEAS Programmer’s Guide, tells Fortran 90 programmers how to

add new capabilities to DPEAS and how to modify existing capabilities. DPEAS is a key

subcomponent of the Cross-Sensor Processing Environment, which is described in another

companion document, the DPEAS Cross-Sensor Processing Environment (CPE) Guide. Each

CPE process is described more fully by an individualized CPE Process Document.

The scope of this document is limited to the DPEAS program. It does not contain information

about the CPE or of a particular CPE process.

Section 3 of this document covers the installation and configuration of DPEAS for users. The

largest section of this document is Section 4, which covers the use of DPEAS. Section 5 of this

document covers the advanced features of DPEAS.

DPEAS User’s Guide 3

CSU/CIRA Dec 2011

3 INSTALLATION AND CONFIGURATION

This section is intended to facilitate the smooth installation and configuration of DPEAS. Three

topics are covered: (1) DPEAS system requirements, (2) installing DPEAS, and (3) configuring

DPEAS.

3.1 System Requirements for DPEAS

Before DPEAS can be installed, your computer must first be equipped with the following:

 Windows 7 (or greater)

 Sufficient memory and disk space for the specific application. (This information will be

supplied by the developer of the application.)

To run DPEAS in a parallel computing mode, all computers should each have the following:

 Batch Job Server 2.1A (see http://www.camelliasoftware.com)

To modify DPEAS, additional requirements are necessary (see the DPEAS Programmer’s

Guide).

3.2 Installing DPEAS

You may install DPEAS from the DPEAS CD-R or from a shared network drive. The

instructions below focus on installation from the DPEAS CD-R, but changes to the procedure for

a shared network drive are also noted.

1. If you are installing from the DPEAS CD-R, insert the disk into your computer’s CD

drive, which we will assume is drive d:.

2. Open a DOS command window.

3. In the DOS command window, change the directory to the DPEAS CD-R location (e.g.,

d:), or to the networked drive (e.g., n:, cd \DPEAS).

a. Identify a new directory location target to contain DPEAS. We suggest c:\DPEAS.

(And we assume below that this is your choice. If your choice differs, adjust the

following commands accordingly.)

b. Verify that the copy_dpeas.bat file source environment variable definition

points to the correct DPEAS source directory location. If necessary, edit the

copy_dpeas.bat file and redefine the source environment variable value.

c. Notes:

i. If DPEAS will be used in a parallel computing mode, please use the

Universal Naming Convention (UNC) for the DPEAS directory path (e.g.

\\MYCOMPUTER\myshare\DPEAS, instead of c:\DPEAS).

DPEAS User’s Guide 4

CSU/CIRA Dec 2011

ii. Multiple DPEAS versions and installations can co-exist simultaneously in

different directories (e.g., c:\DPEAS2, c:\DPEAS3, etc.).

4. Copy the DPEAS files to your computer by entering one of the following two commands

into the DOS command window:

a. For a full DPEAS installation (including source code), enter
copy_dpeas c:\DPEAS full

b. For a "lite" DPEAS installation (not including source code), enter
copy_dpeas_c:\DPEAS lite

After either command has been entered, follow the instructions that appear during the

installation procedure.

5. Close the DOS command window and remove the DPEAS CD-R. Installation is complete

and no reboot is necessary.

6. Additional install command options can be specified. Please enter copy_dpeas with no

arguments to read an informational message on the available options.

3.3 Configuring DPEAS for Parallel Mode Operation

DPEAS can automatically assign subtasks (e.g., the processing of a single file of data) to

different computers in a network or even to a single computer. This parallelism can both increase

processing speed and simplify processing. If you do not plan to use parallel mode, you do not

need to configure DPEAS.

To configure DPEAS for parallel mode operation, two steps are necessary:

1. Verify the Batch Job Server (BJS) setup.

2. Configure the resource files.

3.3.1 Batch Job Server (BJS) Setup

To use DPEAS in parallel mode on a cluster of computers, the Batch Job Server service must be

running on each computer in the cluster. The BJS service acts as an agent that launches the

various parallel jobs and performs the necessary job control and security measures.

Verify that BJS is installed and that you have appropriate BJS user privileges. At a minimum

your user account should belong to the following local user groups on each computer for which

you intend to run DPEAS in parallel mode:

1. “Batch Users”

2. “Batch Job Dir Users”

3.3.2 Resource File Configuration

Parallel processing is controlled by “resource files,” which are located at:

\DPEAS\setup\configuration\resource\. They are ASCII text files and may be modified at

DPEAS User’s Guide 5

CSU/CIRA Dec 2011

any time (even while DPEAS is running). Any modifications to the resource files are made

effective upon saving the resource file to disk. Depending upon the current processing load, it

may take up to one minute before the changes fully propagate through the system.

A default resource file is created when DPEAS is installed. The resource file is named after the

target computer with a .txt file extension. DPEAS uses the resource files to determine which

computer resource should get the next “job block” of the DPEAS input script.

DPEAS performs the parallelization of jobs automatically. There is no parallel programming by

the user. When DPEAS encounters a top-level Fortran “DO loop” in the DPEAS input script, it is

parallelized (unless the DPE_SLAVE routine has been called, in which case the parallelization is

disabled).

To modify a resource file, double-click on the resource file to open it with the default text editor.

It should look something like this:

&RESOURCE_NML

 RESOURCE%CPU = 1

 RESOURCE%CPU_RATING = 2000

 RESOURCE%MEMORY = 1024

 RESOURCE%AVAILABLE(1) = "M T W Th F S Su 00:00:00.00 24:00:00.00"

 /

The file contains a Fortran namelist, RESOURCE_NML, which describes the capabilities of the

particular DPEAS computer resource. The variables in the list are:

RESOURCE%CPU is the maximum number of CPUs that DPEAS may use on that particular

computer resource. Zero means that that resource (computer) may not be used. For single

CPU computers, set RESOURCE%CPU = 1.

RESOURCE%CPU_RATING is a relative performance rating (approximately the clock speed in

megahertz) that is assigned to that particular computer resource. DPEAS uses a modified

round-robin load balancing. If a machine is given a higher rating, it moves to the top of the

list. An idle computer with the highest CPU rating is given the next pending job block.

DPEAS has the ability to skip resources that do not meet pending job block CPU

requirements (more information is available below under the DPE_REQUIREMENTS routine

description in section 4.1.1.9).

RESOURCE%MEMORY specifies the maximum available memory (in megabytes). DPEAS has the

ability to skip resources that do not meet pending job block memory requirements (more

information is available below under the DPE_REQUIREMENTS routine description in section

4.1.1.9).

RESOURCE%AVAILABLE(n) specifies the time availability constraints of the computer resource as

a data array containing the time availability range. This is specified by a simple time entry

for each element of the array. There can be multiple time schedules (e.g., available weekends

and non-business hours during the week). The available time array must be specified

sequentially (e.g., n = 1, 2, 3, etc.) if multiple time slots are used. Time is specified in local

time.

DPEAS User’s Guide 6

CSU/CIRA Dec 2011

Every computer should have a resource file for itself. The master computer needs a resource file

for each computer in the cluster to which it is allowed to assign jobs.

When testing new DPEAS input scripts, it is recommended that you disable parallelization with a

call to the DPE_SLAVE routine so that you can more easily view the system results. Also, since

there is no guarantee that a DPEAS job block will run on the same computer resource, use UNC

file path names throughout the DPEAS input script files (e.g., use file names such as:

\\mycomputername\mysharename\mydirectory\myfile.f90.).

Security is handled at the network domain level, the resource files are used to inform DPEAS of

potential resources that are available; they do not grant resources.

DPEAS User’s Guide 7

CSU/CIRA Dec 2011

4 USING DPEAS

DPEAS can be run from the command line, from within MS Visual Studio, or from a batch file.

 From the command line, run DPEAS.exe with an explicit path to this executable’s

location. DPEAS.exe takes a single argument, which is a DPEAS script file that contains

instructions to DPEAS. For example, the command

\DPEAS\bin\DPEAS_Win32_Release.exe ..\data\input\test.f90

will run the release version of DPEAS using the test.f90 script located in the

\DPEAS\data\input directory. Section 4.1 describes the DPEAS script files.

 From within MS Visual Studio the Executable and Program Arguments fields under

Project Settings are set to the locations of the executable file and input script. DPEAS can

be run without recompilation. The input script does not need to be compiled.

 DPEAS can be run from a DOS Batch File quite easily. It is also possible to set program

exit return codes using BJS utility commands. This enables DPEAS to change the BJS

status for easier error handling behaviors.

DPEAS must be called with a UNC path naming convention to enable parallel mode

execution. Relative path names for the DPEAS input script file are allowed, and are

relative to the DPEAS executable directory location.

A major portion of the DPEAS script file tells DPEAS which files to process. Section 4.1

describes the basic DPEAS input script syntax. Section 4.2 describes the data directory structure

for DPEAS.

DPEAS is capable of running on several computers (nodes) simultaneously. Section 4.3

describes the DPEAS parallel processing capabilities. To turn off the automatic parallelization of

DPEAS input (advisable when first using DPEAS), add call DPE_SLAVE at the start of the

execution part of the input file.

The output of DPEAS (in addition to the processed data files) is a log file, which tells what

DPEAS did and what problems it found while processing the data. Section 4.4 describes the

interpretation of log files.

4.1 Script File Description

Script files tell DPEAS what to do. A DPEAS script file is text file in free source form Fortran

90. The script files are given an .F90 extension, but they are not compiled. Rather, DPEAS acts

as a Fortran 90 interpreter. Let’s consider the following example DPEAS script file.

! DPEAS input syntax example

DPEAS User’s Guide 8

CSU/CIRA Dec 2011

character (len = 255), pointer :: file (:) ! file names

character (len = 255) :: input_files = '\\DORADO\E\TEMP*.dat'

character (len = 255) :: output_dir = '\\ULYSSES\E\HDFEOS\SSMI\'

integer :: i ! dummy integer

integer :: n ! number of files

call get_files (input_files, file, n)

do i = 1, n

 call ssmi2hdfeos (file(i), output_dir)

enddo

The first line of the example is simply a comment—and comments should be used liberally to

document the script. The 2
nd

 through 5
th

 lines (not counting blank lines) define some variables to

be used. (all variables in DPEAS scripts must be defined. IMPLICIT NONE is assumed.) The

get_files routine is one of the DPEAS intrinsic routines, which are described below.

get_files searches for files that match the string input_files and returns a list of these files in

the array file. The number of files found is returned in variable n. The DO loop processes each

of the n files with the routine ssmi2hdfeos. The processed files are placed in the directory

specified by the variable output_dir.

The DPEAS F90 interpreter implements only a subset of Fortran 90. The complete list of

allowed statements is detailed in
http://lamar.colostate.edu/~asjones/DPEAS/DPEAS_syntax.htm.

Writing a subroutine cannot be done in the DPEAS script. However, the DPEAS intrinsic

routines (see section 4.1.1) cover a wide variety of ways to process satellite data. In addition,

other routines, called application-specific routines, can be written, compiled, and integrated into

DPEAS to do special tasks (see the DPEAS Programmer’s Guide). Some application-specific

routines are supplied with DPEAS (see section 4.1.2).

Other example input script files are contained under the C:\DPEAS\examples directory.

4.1.1 Intrinsic Routines

DPEAS intrinsic routines are the subroutines that constitute the core capabilities of DPEAS. The

intrinsic routines described in sections 4.1.1.1 through 4.1.1.29 are organized alphabetically. At

the end of each section, a piece of code shows the subroutine interface. To use the routine, set up

the arguments, and then call the routine. The description of the routines here is a high-level

description so that DPEAS users can understand the script files. To write or significantly modify

the script files, consult the DPEAS Programmer’s Guide.

4.1.1.1 Archive

Purpose: This routine archives (moves) files from a source directory to a target directory. The

number of files to be moved is determined by the target file size. This permits archival

to size-limited, off-line archival storage. The archive operation is performed on all

subdirectories simultaneously in sequential filename order. Additionally, the operation

DPEAS User’s Guide 9

CSU/CIRA Dec 2011

is capable of handling mirror set replication behaviors. If used, the limit specified is a

soft-limit since all files that share the same YYYYDDD (or 7 character) filename

prefix are moved in a contiguous manner.

subroutine archive (source, target, limit)

character (len = 255), intent (IN) :: source ! source directory

character (len = 255), intent (IN) :: target ! target directory

double precision, intent (IN), optional :: limit ! target size limits (bytes)

4.1.1.2 Composite

Purpose: This routine composites an input file according to a specific method and precalculated

weights. Methods supported include: 1) “UNIFORM” – uniform weights are used; this

results in a simple average of the input data files, and 2) “OVERLAY” – uniform

weights are used, then a simple time filter is applied to use only the most recent data in

the overlay. In the “OVERLAY” method, the temporal weighting can be controlled by

the optional half_life and zero_offset arguments. The temporal weight is

computed as: exp (-half_life * delta time) + zero_offset. Negative

temporal weights are truncated to zero. By default, or if the half_life is defined as

zero, a temporal “if statement” is used (i.e., only the most recent data is retained). The

weight_file argument specifies a HDF file containing static weights to use within

the compositing process. If the weight_file argument is omitted, uniform static

weights are generated dynamically by this routine. If the start time is given, the time

prefix of the static output file name may be updated. The start argument is required by

the “OVERLAY” method. The start time can be specified as “NOW” if the current

time is desired. If the control argument is omitted, the default behavior is to create all

possible composite output variables. The control argument is a binary flag that

corresponds to the integers specified for each appropriate composite variable (for the

specified composite method) in the dpe_composite_method_module. The bits are

specified with the rightmost bit being the least significant. The output data file is

reinitialized with each invocation of this routine. Therefore, prior composite results are

not intermixed with the new composite output results.

subroutine composite (input_file, output_file, method, weight_file, start, control)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (INOUT) :: output_file ! output file name

character (len = 255), intent (IN) :: method ! composite method

character (len = 255), intent (IN), optional :: weight_file ! weight file name

character (len = 255), intent (IN), optional :: start ! composite start time

double precision, intent (IN), optional :: half_life ! temporal half life

double precision, intent (IN), optional :: zero_offset ! temporal zero offset

integer, intent (IN), optional :: control ! output control flag

4.1.1.3 Composite_Weights

Purpose: This routine generates the static composite weights for a particular input file. This

routine supports the method, “UNIFORM” – uniform weights are used; this generates

DPEAS User’s Guide 10

CSU/CIRA Dec 2011

a weight file containing weight values of “1” for each valid data element contained in

the input data file.

subroutine composite_weights (input_file, output_file, method)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (INOUT) :: output_file ! output file name

character (len = 255), intent (IN) :: method ! composite method

4.1.1.4 Copyfile

Purpose: This routine copies an existing file to a new file using a modified file name

specification. If the file already exists, the copy operation is still performed.

subroutine copyfile (input_file, context, file_spec, dir_spec, prefix_spec, &

suffix_spec, file_type_spec)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (IN), optional :: context ! search context

character (len = 255), intent (IN), optional :: file_spec ! output file name

character (len = 255), intent (IN), optional :: dir_spec ! directory name

character (len = 255), intent (IN), optional :: prefix_spec ! prefix name

character (len = 255), intent (IN), optional :: suffix_spec ! suffix name

character (len = 255), intent (IN), optional :: file_type_spec ! file type name

4.1.1.5 Deallocate_Hdfeos

Purpose: This routine deallocates an HDF-EOS data file from the DPEAS data structure or,

optionally, deletes a component of an HDF-EOS data file such as a grid, a point, or a

swath, or a specific data item.

subroutine deallocate_hdfeos (input_file, name, grid, point, swath, item)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (IN), optional :: name ! grid, point, or swath name

character (len = 255), intent (IN), optional :: grid ! grid name

character (len = 255), intent (IN), optional :: point ! point name

character (len = 255), intent (IN), optional :: swath ! swath name

character (len = 255), intent (IN), optional :: item ! data item name

4.1.1.6 DPE_Code_Check

Purpose: This routine performs fortran source code style verification. It implements a multipass

scan and reports any style discrepancies as error messages. No modification of the

input file is performed. Two special code directives can be placed into the fortran

source files:

1) !DPEAS$BASIC_CODE_CHECK: this only performs the most basic code checking on

the rest of the file, normally it is placed at the top of a particularly complex

fortran source file, or a file which is not intended for distribution.

DPEAS User’s Guide 11

CSU/CIRA Dec 2011

2) !DPEAS$NOSYSTEM_CODE_CHECK: this skips the system library usage checks, but

performs the rest of the code checking on the rest of the file.

3) !DPEAS$TOGGLE_CODE_CHECK: this allows toggling of the code checking behaviors

and is useful to particularly long/boring sections of codes which might

otherwise fail the number of commentless lines scan.

subroutine dpe_code_check (input_file)

character (len = 255), intent (IN) :: input_file ! input file name

4.1.1.7 DPE_Mirror

Purpose: This routine performs a full update of a particular mirror set source. To update all

available mirror set sources, set mirror_source to “*”. The mirror sets are defined in

the DPEAS resource files (see 5.2 for more information). The mirror set information

format is:

Mirror%source(1) = “\\node name\share name\source directory name\”

Mirror%target(1) = “\\node name\share name\target directory name\”

Mirror%replicate(1) = .TRUE.

where, if mirror%replicate is .TRUE., then replication is performed (i.e., if target

files do not exist on the source, then the target files are deleted). Otherwise, if

mirror%replicate is .FALSE., the synchronization is performed (i.e., if target files

do not exist on the source, then the target files are copied to the source location). The

synchronization mode does not delete any files, and is the default setting if

mirror%replicate is not explicitly defined in the resource file. Use the replication-

mirroring mode with caution, since it enables an automatic deletion process.

subroutine dpe_mirror (mirror_source)

character (len = 255), intent (IN) :: mirror_source ! mirror set source

4.1.1.8 DPE_Mode_Asynchronous

Purpose: This routine sets the job behavior to be asynchronous at the end of each DO loop (i.e.,

the next line of code does not wait for the prior active DO loop to complete).

subroutine dpe_mode_asynchronous

4.1.1.9 DPE_Mode_Sychronous

Purpose: This routine sets the job behavior to synchronize at the end of each DO loop. This is

the default behavior in DPEAS.

subroutine dpe_mode_synchronous

DPEAS User’s Guide 12

CSU/CIRA Dec 2011

4.1.1.10 DPE_Requirements

Purpose: This routine updates the job resource requirements from their nominal default values.

This routine is used to control the DPEAS job submission logic so that only nodes

with sufficient resources are sent jobs that require a large amount of resources.

Normally, the default resource requirement values are adequate since most jobs are

CPU limited. However, sometimes large memory or multi-threaded jobs need

additional control. This routine provides that control.

subroutine dpe_requirements (cpu, memory)

integer, intent (IN) :: cpu ! cpu(s) required

integer, intent (IN) :: memory ! memory (MB) required

4.1.1.11 DPE_Slave

Purpose: This routine makes the current node a slave node. It is primarily for internal use by the

DPEAS system. If used on a master node, it will disable the parallelization of

subsequent DO loop blocks.

subroutine dpe_slave

4.1.1.12 DPE_Test_Call

Purpose: This routine is a test subroutine for debugging the DPEAS argument functions. This is

also a good example of a DPEAS subroutine driver.

subroutine dpe_test_call (test1, test2, string1, string2)

integer, intent (OUT) :: test1 (3)

integer, intent (INOUT) :: test2

character (len = 30), optional, intent (INOUT) :: string1

character (len = 30), optional, intent (INOUT) :: string2 (2)

4.1.1.13 DPE_Test_Hdfeos

Purpose: This routine performs a system test of the HDF-EOS library. A test file named

DPE_TEST_HDFEOS.hdf is generated in the computer’s TEMP directory. If IMAX is

specified to be larger than 1, then the array sizes are proportionally enlarged to

conduct test using the larger file size.

subroutine dpe_test_hdfeos (imax)

integer, intent (IN) :: imax ! size of test (nominal test is 1)

4.1.1.14 DPE_Test_Load

Purpose: This routine performs a system test with the specified CPU and I/O load factors.

subroutine dpe_test_load (cpu_io_ratio, load_factor)

DPEAS User’s Guide 13

CSU/CIRA Dec 2011

real, intent (IN) :: cpu_io_ratio ! CPU/IO ratio, range (0.0 – 1.0)

real, intent (IN) :: load_factor ! load amount, range (0.0 – 1.0)

4.1.1.15 DPE_Write_Data_Structure

Purpose: This routine writes the entire contents of the DPEAS data structure list to the default

output device as a formatted list. It is useful for debugging the DPEAS data structure.

subroutine dpe_write_data_structure

4.1.1.16 DPE_Write_DB_Statistics

Purpose: This routine writes the DPEAS statistical summary information from all specified

input database directories. It is useful for consolidating multiple DPEAS installation

reports and takes up to 99 database directory path names. The directory path should be

specified using UNC, e.g., \\DORADO\D\Jones\Projects\DPEAS\. Note that if

subtotals = .TRUE., then the routine will print all of the database subtotal statistics for

each database file it encounters; otherwise, if subtotals = .FALSE., it will not print the

subtotal statistics and will merely list the aggregate statistics totals.

subroutine dpe_write_db_statistics (subtotals, path01, path02, pathnn…)

logical, intent (IN) :: subtotals ! logical subtotal flag

character (len = 255), intent (IN) :: path01 ! database directory path 1

character (len = 255), intent (IN) :: path02 ! database directory path 2

character (len = 255), intent (IN) :: path03 ! database directory path 3

4.1.1.17 DPE_Write_Mirror_Sets

Purpose: This routine writes all DPEAS mirror set definitions to the default output device as a

formatted list. It is useful for debugging the DPEAS mirror set specifications.

subroutine dpe_write_mirror_sets

4.1.1.18 DPE_Write_Variables

Purpose: This routine writes all internal DPEAS variables to the default output device as a

formatted list. It is useful for debugging the DPEAS internal variables.

subroutine dpe_write_variables

4.1.1.19 Filename

Purpose: This routine constructs a file name specification for use in other routines. It is

necessary because the concatenation operator (//) is not implemented in the DPEAS

script language. To piece together the path, filename, and file extension, filename is

necessary.

DPEAS User’s Guide 14

CSU/CIRA Dec 2011

The filename routine starts with the default file specification, file_spec, then

overrides the various file name segments with the optional filename routine

arguments. For example, the directory name argument, dir_spec, will replace the

directory name portion of the input file_spec variable, while the file type name

argument file_type_spec, replaces the file type (e.g., .TXT) of the input file_spec

variable. The prefix_spec and suffix_spec can only append new information to the

file name segment (e.g., what is left after the directory and file types are removed).

This allows file names to be easily generated from existing file names. A common use

of suffix_spec is to append the _REMAP suffix to a file name to visually indicate that

it has been remapped via a DPEAS remapping routine (e.g.,

\directory_path\filename_REMAP.HDF). This capability gives the DPEAS user

easy control over the naming of output files.

subroutine filename (file_name, file_spec, dir_spec, prefix_spec, suffix_spec, &

file_type_spec)

character (len = 255), intent (OUT) :: file_name ! output file name

character (len = 255), intent (IN) :: file_spec ! input file name

character (len = 255), intent (IN), optional :: dir_spec ! directory name

character (len = 255), intent (IN), optional :: prefix_spec ! prefix name

character (len = 255), intent (IN), optional :: suffix_spec ! suffix name

character (len = 255), intent (IN), optional :: file_type_spec ! file type name

4.1.1.20 Get_Files

Purpose: This routine returns a list of files that match a target file specification. Note that this

routine dynamically allocates space for the files using a pointer data type. A unique

search context identifier can optionally be specified so that previously returned file

names are not returned in subsequent searches. This is particularly useful for near real-

time processing of data streams where the input directory is being constantly updated

with new files. Context information is maintained between multiple instances of the

program and coordination of the context information between nodes occurs

automatically. Thus, all context identification specifications should be unique to each

input script.

The context argument is used to allow DPEAS to maintain a coherent system

processing context information (a history of what has or has not been already

processed). The context argument is the mechanism DPEAS uses to recall what files

have been returned in previous get_files invocations. A unique character string

identifier (e.g., PROCESSED_FILES) can be used which will allow the get_files

routine to only return "new" files not found or processed previously. The previous

accumulated history of get_files results are saved under the

\DPEAS\data\work\<context> directory as simple ASCII placeholder marker files.

To flush the context (and perform a full fresh search), either delete the

\DPEAS\data\work\<context> directory; or to temporarily flush the context, simply

call get_files without the context argument. Be careful not to inadvertently use the

same search context argument more than once, otherwise the context information may

be overwritten unintentionally, resulting in loss of the context information. The search

DPEAS User’s Guide 15

CSU/CIRA Dec 2011

context information in the \DPEAS\data\work\<context> directory does not require

any user intervention. The information is automatically managed and maintained by

DPEAS.

Optionally, the results can be filtered using additional time filter criteria. All time filter

criteria are optional and can be specified in many possible combinations. All times are

based on the file naming conventions. The time filter should not be applied to non-

YYYYDDDHHMMSS... filenames.

Time filter argument definitions:

 Start: The start time of the period can be specified as an ASCII text string in an

absolute ('YYYY-DDD HH:MM:SS.CC' or 'YYYY-MON-DD HH:MM:SS.CC'

or 'YYYY-MM-DD HH:MM:SS.CC') or delta ('DDD HH:MM:SS.CC') time

formats, or by ASCII text file names following the YYYYDDDHHMMSS...

nomenclature.

 Period: The period is the length of time per cycle. It is specified by an ASCII

text string in delta time format.

 Duration: The duration is the length of the time filter "window". It is specified

by an ASCII text string in delta time format.

 Offset: The offset is applied to the start time of the period, and offsets all time

window cycles. It is specified by an ASCII text string in delta time format. It

can be negative (e.g., "- 01:00:00.0").

 Occurrences: The number of occurrences controls how many cycles are filtered.

If set to 0, the file nearest to the center of the time filter "window" is returned

from each filter cycle.

For example, suppose we want to get the files that lie between 08:00 and 13:00 hours

on day 264 of 2003. The call to get_files would be:

call get_files(target_file_spec, file, n, START=’2003-264 08:00:00.00’,

DURATION=’0 05:00:00.00’)

To get the files that lie between 08:00 and 13:00 hours for each day over a ten day

period beginning on day 264 of 2003, the call to get_files would be:

call get_files(search, file, n, START=’2003-264 08:00:00.00’, PERIOD=’1

00:00:00.00’, DURATION=’0 05:00:00.00’, OCCURRENCES=10)

If the Period option is used, the Occurrences option should be specified as well.

Time filter argument default values:

 Start: The current time is used.

 Period: An infinite period is used.

DPEAS User’s Guide 16

CSU/CIRA Dec 2011

 Duration: An infinite duration is used.

 Offset: Set to zero.

 Occurrences: An infinite number of occurrences are tested.

If all time filter arguments are omitted, no time filtering is performed on the files.

Optionally, the file name list can be prefilterd so that file name duplicates are

removed. The argument unique_filename_length specifies the maximum offset

position for the uniqueness test.

Optionally, the nearest matching file can be returned according to the file name

nomenclature. The argument, match, specifies the target file name that is to be

matched. You may modify the match by using the optional time filter arguments. The

match argument supersedes the start filter argument. By default, the duration and

offset arguments are set to search all available files for the match.

subroutine get_files (target_file_spec, file, number_of_files)

character (len = 255), intent (IN) :: target_file_spec ! target file

character (len = 255), pointer :: file (:) ! file names

integer, intent (OUT) :: number_of_files ! number of files found

character (len = 255), intent (IN), optional :: context ! context ID

character (len = 255), intent (IN), optional :: start ! filter start time

character (len = 255), intent (IN), optional :: period ! filter period

character (len = 255), intent (IN), optional :: duration ! sample duration

character (len = 255), intent (IN), optional :: offset ! filter time offset

integer, intent (IN), optional :: occurrences ! number of periods

integer, intent (IN), optional :: unique_filename_length ! unique filename length

character (len = 255), intent (IN), optional :: match ! target to match

Note that if get_files is called more than once in an input script using the same variable

for the file argument, then this variable must be deallocated before the next call to

get_files where it is used. For example:
call get_files (target_file1, file, n) ! uses ‘file’ as an argument

deallocate (file) ! must deallocate ‘file’ before the next get_files call that uses it

call get_files (target_file2, file, n) ! uses ‘file’ again

4.1.1.21 Read_Hdfeos

Purpose: This routine reads an HDF-EOS data file and inserts the file into the main DPEAS data

structure. The optional only argument allows for the selective reading of HDF-EOS

data files to minimize unnecessary I/O. The only argument is specified as a comma-

delimited list of HDF-EOS data field names that are to be read, for example:

only = ‘Lat,Lon,Chan1’.

subroutine read_hdfeos (input_file, only)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (IN), optional :: only ! data to read

DPEAS User’s Guide 17

CSU/CIRA Dec 2011

4.1.1.22 Remap

Purpose: This routine remaps an HDF-EOS data file to a specified projection space (given by

HDF-EOS projection parameters contained in the PROJ_FILE input file). All data

contained in the HDF-EOS file are remapped. One-dimensional arrays that have a

defined geographical mapping are converted to two-dimensional arrays to reflect the

spatial remapping. Note: that this routine promotes the output data item numbertype to

either FLOAT32 or FLOAT64 depending on the input data item numbertype. The

remapped data are written to an internal DPEAS data structure with the name

output_file. Data structure names within the HDF-EOS data file are unchanged.

This routine performs no explicit I/O. To save the remapped data to a file on the drive

use the WRITE_HDFEOS routine with the value contained in output_file as its

argument. If the bin argument is .TRUE., use the binning method instead of the

interpolation method. The arrays that are (or are not) processed are controlled by the

only2d argument value.

The following input data arrays are not defined by this routine for remapping under the

following only2d conditions:

if only2d = .TRUE.

1. Arrays with the suffix _Calibration.

2. Arrays with the suffix _Attenna_Pattern_Correction.

3. Arrays that have non-geographical dimensions.

if only2d = .FALSE.

1. No arrays are skipped. Arrays of all ranks are defined. Caution: some

multidimensional arrays with non-geographical dimensions can become quite

large.

subroutine remap (input_file, proj_file, output_file, bin, only2d)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (IN) :: proj_file ! projection file name

character (len = 255), intent (INOUT) :: output_file ! output file name

logical, intent (IN), optional :: bin ! bin control flag

logical, intent (IN), optional :: only2d ! only2D control flag

4.1.1.23 System

Purpose: This routine passes a command to the operating system and then pauses until the

command is done.

subroutine system (command)

character (len = MAX_SYSTEM_COMMAND), intent (IN) :: command ! command line

DPEAS User’s Guide 18

CSU/CIRA Dec 2011

4.1.1.24 Time

Purpose: This routine writes a message containing the current local time and the elapsed time

from the previous call.

subroutine time

4.1.1.25 Write_GIF

Purpose: This routine writes a DPEAS data structure data item to a digital image in GIF 87a

format. Optionally, this routine can scale the data and fill in missing values in the

image with the fillcount value. This routine will not create an output image file if the

data field contains only missing data flags.

subroutine write_gif (input_file, name, item, output_dir, min, max, inc, fillcount)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (IN) :: name ! swath or grid name

character (len = 255), intent (IN) :: item ! data item name

character (len = 255), intent (IN) :: output_dir ! output directory

real, intent (IN), optional :: min ! minimum value

real, intent (IN), optional :: max ! maximum value

real, intent (IN), optional :: inc ! increment value

integer, intent (IN), optional :: fillcount ! fill count value

4.1.1.26 Write_Hdfeos

Purpose: This routine writes an HDF-EOS data file from the main DPEAS data structure to disk.

All data components of the HDF-EOS data file are written.

subroutine write_hdfeos (output_file)

character (len = 255), intent (IN) :: output_file ! output file name

4.1.1.27 Write_Ramdas

Purpose: This routine writes a DPEAS data structure data item to a tab-delimited text file in the

RAMDAS output format.

subroutine write_ramdas (input_file, name, item, output_dir)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (IN) :: name ! swath or grid name

character (len = 255), intent (IN) :: item ! data item name

character (len = 255), intent (IN) :: output_dir ! output directory

4.1.1.28 Write_Text

Purpose: This routine writes a DPEAS data structure data item to a text file in tab-delimited

ASCII format. The first column of data is that which is specified by the data item

DPEAS User’s Guide 19

CSU/CIRA Dec 2011

name. All associated data items are written in the following columns. Currently, only

arrays that match the target data item array in rank and dimension size are written.

subroutine write_text (input_file, name, item, output_dir)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (IN) :: name ! swath or grid name

character (len = 255), intent (IN) :: item ! data item name

character (len = 255), intent (IN) :: output_dir ! output directory

4.1.1.29 Write_TIFF

Purpose: This routine writes a DPEAS data structure data item to a digital image in TIFF

format. Optionally, this routine can scale the data and fill in missing values in the

image with the fillcount value. This routine will not create an output image file if the

data field contains only missing data flags.

subroutine write_tiff (input_file, name, item, output_dir, min, max, inc, fillcount)

character (len = 255), intent (IN) :: input_file ! input file name

character (len = 255), intent (IN) :: name ! swath or grid name

character (len = 255), intent (IN) :: item ! data item name

character (len = 255), intent (IN) :: output_dir ! output directory

real, intent (IN), optional :: min ! minimum value

real, intent (IN), optional :: max ! maximum value

real, intent (IN), optional :: inc ! increment value

integer, intent (IN), optional :: fillcount ! fill count value

4.1.1.30 WWW_Update

Purpose: This routine purges any old files and updates the web directory information. This

routine uses the file’s last-written date for purging purposes. If the keep argument is

not present, no files are purged. The directory name specification can include a

filename, but only the directory name information is used. If the plot argument is

.TRUE., a simple plot is made of the file times (as determined by the filename

nomenclature) to the standard output, and some diagnostics are printed for data gaps

and overlaps. The plot capability is especially useful to quickly examine data sampling

characteristics. No plots are generated by default (i.e., plot = .FALSE.).

subroutine www_update (www_dir, dir_spec, keep)

character (len = 255), intent (IN) :: www_dir ! WWW output directory

character (len = 255), intent (IN) :: dir_spec ! directory name specification

real, intent (IN), optional :: keep ! number of days to keep

logical, intent (IN), optional :: plot ! plot the file times

DPEAS User’s Guide 20

CSU/CIRA Dec 2011

4.1.2 Format Translator Routines

4.1.2.1 AGRMET2HDFEOS

Purpose: Convert AFWA AGRMET model output from GRIB format to an HDF-EOS grid

format. This routine can handle 3HR and polar stereographic GRIB files at “8
th

 mesh”. This

routine automatically generates a file name based on the data time. When the output_file

argument is present, the output file name is returned and points to the internal HDF-EOS data

structure that has been created (but not written to disk; i.e., no hard I/O is performed when

output_file is specified). If called with the output_file argument, the created HDF-EOS data

structure remains after the call to this routine and it is the caller’s responsibility to deallocate the

created HDF-EOS data structure. The DPEAS_SAT_NAME and DPEAS_SENSOR_NAME are

used to contain the model name and the model output type information.

subroutine agrmet2hdfeos (input_file, output_dir, output_file)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

4.1.2.2 AMSU2HDFEOS

Purpose: Convert an AMSU data file in NESDIS HDFEOS format to a “pure” HDF-EOS

format. This routine can handle AMSU-A and AMSU-B sensor data files. This routine

automatically generates a file name based on the data time. All available multispectral data

matching the input file specification is combined into one multichannel HDF-EOS file. When the

output_file argument is present, the output file name is returned and points to the internal HDF-

EOS data structure that has been created (but not written to disk; i.e., no hard I/O is performed

when output_file is specified). If called with the output_file argument, the created HDF-EOS

data structure remains after the call to this routine and it is the caller’s responsibility to deallocate

the created HDF-EOS data structure. If called without the sat_number argument, a default value

of “15” is used.

subroutine amsu2hdfeos (input_file, output_dir, output_file)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

4.1.2.3 AVHRR2HDFEOS

Purpose: Convert an AVHRR GAC or LAC data file in McIDAS format to HDF-EOS. This

routine automatically generates a file name based on the data time. All available multispectral

data matching the input file specification is combined into one multichannel HDF-EOS file.

When the output_file argument is present, the output file name is returned and points to the

internal HDF-EOS data structure that has been created (but not written to disk; i.e., no hard I/O is

performed when output_file is specified). If called with the output_file argument, the created

DPEAS User’s Guide 21

CSU/CIRA Dec 2011

HDF-EOS data structure remains after the call to this routine and it is the caller’s responsibility

to deallocate the created HDF-EOS data structure.

subroutine avhrr2hdfeos (input_file, output_dir, output_file, min_lat, max_lat,

min_lon, max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.2.4 GDAS2HDFEOS

Purpose: Convert a GDAS data file in GRIB format to HDF-EOS. This routine automatically

generates a file name based on the data time. When the output_file argument is present, the

output file name is returned and points to the internal HDF-EOS data structure that has been

created (but not written to disk; i.e., no hard I/O is performed when output_file is specified). If

called with the output_file argument, the created HDF-EOS data structure remains after the call

to this routine and it is the caller’s responsibility to deallocate the created HDF-EOS data

structure.

subroutine gdas2hdfeos (input_file, output_dir, output_file)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

4.1.2.5 GFS2HDFEOS

Purpose: Convert a GFS data file in GRIB format to HDF-EOS. This routine automatically

generates a file name based on the data time. When the output_file argument is present, the

output file name is returned and points to the internal HDF-EOS data structure that has been

created (but not written to disk; i.e., no hard I/O is performed when output_file is specified). If

called with the output_file argument, the created HDF-EOS data structure remains after the call

to this routine and it is the caller’s responsibility to deallocate the created HDF-EOS data

structure.

subroutine gfs2hdfeos (input_file, output_dir, output_file)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

DPEAS User’s Guide 22

CSU/CIRA Dec 2011

4.1.2.6 GOES2HDFEOS

Purpose: Convert a GOES data file in McIDAS format to HDF-EOS. This routine automatically

generates a file name based on the data time. All available multispectral data matching the input

file specification is combined into one multichannel HDF-EOS file. When the output_file

argument is present, the output file name is returned and points to the internal HDF-EOS data

structure that has been created (but not written to disk; i.e., no hard I/O is performed when

output_file is specified). If called with the output_file argument, the created HDF-EOS data

structure remains after the call to this routine and it is the caller’s responsibility to deallocate the

created HDF-EOS data structure.

subroutine goes2hdfeos (input_file, output_dir, output_file, min_lat, max_lat,

min_lon, max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.2.7 MIRS_IMG2HDFEOS

Purpose: Convert a MIRS IMG data file in HDF format to HDF-EOS. This routine renames

several of the NESDIS output arrays to conform to a consistent naming convection and removes

negative algorithm diagnostics, as only one “fill_value” is employed. This routine automatically

generates a file name based on the data time. When the output_file argument is present, the

output file name is returned and points to the internal HDF-EOS data structure that has been

created (but not written to disk; i.e., no hard I/O is performed when output_file is specified). If

called with the output_file argument, the created HDF-EOS data structure remains after the call

to this routine and it is the caller’s responsibility to deallocate the created HDF-EOS data

structure.

subroutine mirs_img2hdfeos (input_file, output_dir, output_file)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

integer, intent (IN) :: dataset_number ! dataset ID number

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

4.1.2.8 OLS2HDFEOS

Purpose: Convert an OLS data file in NGDC OIS format to HDF-EOS. This routine

automatically generates a file name based on the data time. Since an entire OLS orbit swath is

read, considerable amounts of memory may be used, although when the output_file argument is

not present, the data are automatically separated into more manageable 1000 line swath sectors.

However, when the output_file argument is present, the output file name is returned and points to

the internal HDF-EOS data structure that has been created (but not written to disk; i.e., no hard

DPEAS User’s Guide 23

CSU/CIRA Dec 2011

I/O is performed when output_file is specified). If called with the output_file argument, the

created HDF-EOS data structure remains after the call to this routine and it is the caller’s

responsibility to deallocate the created HDF-EOS data structure.

subroutine ols2hdfeos (input_file, output_dir, output_file, min_lat, max_lat, min_lon,

max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.2.9 QMORPH2HDFEOS

Purpose: Convert a QMORPH 8 km data file to HDF-EOS. This routine automatically generates

a file name based on the data time. When the output_file argument is present, the output file

name is returned and points to the internal HDF-EOS data structure that has been created (but not

written to disk; i.e., no hard I/O is performed when output_file is specified). If called with the

output_file argument, the created HDF-EOS data structure remains after the call to this routine

and it is the caller’s responsibility to deallocate the created HDF-EOS data structure.

subroutine qmorph2hdfeos (input_file, output_dir, output_file)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

4.1.2.10 SSMI2HDFEOS

Purpose: Convert a SSM/I data file in CIRA/NVAP format or in the NESDIS HDF-EOS format

to a “pure” HDF-EOS format. The NESDIS data also contain the operational NESDIS products.

This routine automatically generates file names based on the data time. Since an entire day of

data is read, considerable amounts of memory may be used, although when the output_file

argument is not present, the data are automatically separated into smaller, more manageable

individual orbital swaths. However, when the output_file argument is present, the output file

name is returned and points to the internal HDF-EOS data structure that has been created (but not

written to disk; i.e., no hard I/O is performed when output_file is specified). If called with the

output_file argument, the created HDF-EOS data structure remains after the call to this routine

and it is the caller’s responsibility to deallocate the created HDF-EOS data structure.

subroutine ssmi2hdfeos (input_file, output_dir, output_file, min_lat, max_lat,

min_lon, max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

integer, intent (IN), optional :: sat_number ! satellite number (only

used with NESDIS input data)

DPEAS User’s Guide 24

CSU/CIRA Dec 2011

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.2.11 SSMIS2HDFEOS

Purpose: Convert a SSMIS data file in “raw” format to HDF-EOS. This routine automatically

generates file names based on the data time. When the output_file argument is present, the output

file name is returned and points to the internal HDF-EOS data structure that has been created

(but not written to disk; i.e., no hard I/O is performed when output_file is specified). If called

with the output_file argument, the created HDF-EOS data structure remains after the call to this

routine and it is the caller’s responsibility to deallocate the created HDF-EOS data structure.

subroutine ssmis2hdfeos (input_file, output_dir, output_file, min_lat, max_lat,

min_lon, max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.2.12 SSMIS_EDR2HDFEOS

Purpose: Convert a SSMIS EDR data file to HDF-EOS. This code was adapted from the

SSMIS2HDFEOS routine. This routine automatically generates a file name based on the data

time. When the output_file argument is present, the output file name is returned and points to the

internal HDF-EOS data structure that has been created (but not written to disk; i.e., no hard I/O is

performed when output_file is specified). If called with the output_file argument, the created

HDF-EOS data structure remains after the call to this routine and it is the caller’s responsibility

to deallocate the created HDF-EOS data structure.

subroutine ssmis_edr2hdfeos (input_file, output_dir, output_file, min_lat, max_lat,

min_lon, max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

integer, intent (IN), optional :: sat_number ! sat. ID number

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

DPEAS User’s Guide 25

CSU/CIRA Dec 2011

4.1.2.13 SSMT22HDFEOS

Purpose: Convert a SSM/T-2 data file in NESDIS Level 1B format to HDF-EOS. This routine

automatically generates file names based on the data time. When the output_file argument is

present, the output file name is returned and points to the internal HDF-EOS data structure that

has been created (but not written to disk; i.e., no hard I/O is performed when output_file is

specified). If called with the output_file argument, the created HDF-EOS data structure remains

after the call to this routine and it is the caller’s responsibility to deallocate the created HDF-EOS

data structure.

subroutine ssmt22hdfeos (input_file, output_dir, output_file, min_lat, max_lat,

min_lon, max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.2.14 TMI2HDFEOS

Purpose: Convert a TRMM TMI data file in HDF Level 1B format to HDF-EOS. This routine

automatically generates file names based on the data time. When the output_file argument is

present, the output file name is returned and points to the internal HDF-EOS data structure that

has been created (but not written to disk; i.e., no hard I/O is performed when output_file is

specified). If called with the output_file argument, the created HDF-EOS data structure remains

after the call to this routine and it is the caller’s responsibility to deallocate the created HDF-EOS

data structure.

subroutine tmi2hdfeos (input_file, output_dir, output_file, min_lat, max_lat, min_lon,

max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.2.15 VIRS2HDFEOS

Purpose: Convert a TRMM VIRS data file in HDF Level 1B format to HDF-EOS. This routine

automatically generates file names based on the data time. When the output_file argument is

present, the output file name is returned and points to the internal HDF-EOS data structure that

has been created (but not written to disk; i.e., no hard I/O is performed when output_file is

DPEAS User’s Guide 26

CSU/CIRA Dec 2011

specified). If called with the output_file argument, the created HDF-EOS data structure remains

after the call to this routine and it is the caller’s responsibility to deallocate the created HDF-EOS

data structure.

subroutine virs2hdfeos (input_file, output_dir, output_file, min_lat, max_lat,

min_lon, max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.2.16 WINDSAT2HDFEOS

Purpose: Convert a WindSat data file to HDF-EOS. This routine automatically generates file

names based on the data time. When the output_file argument is present, the output file name is

returned and points to the internal HDF-EOS data structure that has been created (but not written

to disk; i.e., no hard I/O is performed when output_file is specified). If called with the output_file

argument, the created HDF-EOS data structure remains after the call to this routine and it is the

caller’s responsibility to deallocate the created HDF-EOS data structure.

subroutine virs2hdfeos (input_file, output_dir, output_file, min_lat, max_lat,

min_lon, max_lon, min_time, max_time)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT), optional :: output_file ! output file

real, intent (IN), optional :: min_lat ! minimum latitude

real, intent (IN), optional :: max_lat ! maximum latitude

real, intent (IN), optional :: min_lon ! minimum longitude

real, intent (IN), optional :: max_lon ! maximum longitude

character (len = 23), intent (IN), optional :: min_time ! minimum time

character (len = 23), intent (IN), optional :: max_time ! maximum time

4.1.3 Application Specific Routines

Application specific routines are unique user-written subroutines found in script files. They tend

to be customized applications and may not be suitable for use by all users without a more

detailed understanding of the particular application. The routines below are merely examples of

such application specific subroutines.

4.1.3.1 AMSU2McIDAS

Purpose: This routine converts an AMSU HDF-EOS data structure into a series of McIDAS

formatted files. Examine the source codes and external documentation materials for

more details.

DPEAS User’s Guide 27

CSU/CIRA Dec 2011

subroutine amsu2mcidas (input_file, output_dir, tbus_dir)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory name

character (len = MAX_PATH), intent (IN) :: tbus_dir ! TBUS directory name

4.1.3.2 Apply_RR_Correction

Purpose: This routine applies the rainfall rate corrections. Note: This routine reads the ASCII

RR correction statistics files created by the rr_statistics routine. Strength inputs

are 0 = no correction, 1 = light correction, 2= full correction.

subroutine apply_rr_correction (input_file, correction_dir, ocean_ref_sat,

ocean_strength, land_ref_sat, land_strength, output_dir, output_file)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: correction_dir ! correction directory

character (len = MAX_PATH), intent (IN) :: ocean_ref_sat ! ocean ref. satellite

integer, intent (IN) :: ocean_strength ! ocean strength

character (len = MAX_PATH), intent (IN) :: land_ref_sat ! land ref. satellite

integer, intent (IN) :: land_strength ! land strength

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT) :: output_file ! output file name

4.1.3.3 Apply_TPW_Correction

Purpose: This routine applies the total precipitable water corrections. Note: This routine reads

the ASCII TPW correction statistics files created by the create_tpw_correction

routine.

subroutine apply_tpw_correction (input_file, correction_dir, output_dir, output_file)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (IN) :: correction_dir ! correction directory

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

character (len = MAX_PATH), intent (OUT) :: output_file ! output file name

4.1.3.4 Bsmooth

Purpose: This routine smooths a 2-D real number data field in an HDF-EOS grid file using a

binomial filter. All I/O is to and from the hard drive.

subroutine bsmooth (input_file, output_file, field_name, filter_size)

character (len = MAX_PATH), intent (IN) :: input_file ! input file name

character (len = MAX_PATH), intent (OUT) :: output_file ! output file name

character (len = MAX_PATH), intent (IN) :: field_name ! field name

integer, intent (IN) :: filter_size ! filter size

DPEAS User’s Guide 28

CSU/CIRA Dec 2011

4.1.3.5 BTPW_Land_Blend

Purpose: This routine blends GPS, MIRS, and GOES Sounder data with the Blended Total

Precipitable Water product. The blending is performed in multiple stages. Examine the

source codes and PSDI documentation materials for more details.

Currently science version 2 is supported.

subroutine btpw_land_blend (version_science, input_merged_tpw_file, output_merged_tpw_file,

gps_ascii_data_file, gps_station_file, goes_east_ascii_file, goes_west_ascii_file,

mirs_surface_file, diagnostics_file)

integer, intent (IN) :: version_science ! science version

character (len = MAX_PATH), intent (IN) :: input_merged_tpw_file ! input file name

character (len = MAX_PATH), intent (OUT) :: output_merged_tpw_file ! output file name

character (len = MAX_PATH), intent (IN) :: gps_ascii_data_file ! GPS file name

character (len = MAX_PATH), intent (IN) :: gps_station_file ! GPS station file name

real, intent (IN) :: max_reasonable_tpw ! max. TPW value

character (len = MAX_PATH), intent (IN) :: goes_east_ascii_file ! GOES-E file name

character (len = MAX_PATH), intent (IN) :: goes_west_ascii_file ! GOES-W file name

character (len = MAX_PATH), intent (IN) :: mirs_surface_file ! MIRS surface file name

character (len = MAX_PATH), intent (IN) :: diagnostics_file ! diagnostics file name

4.1.3.6 Copy_NESDIS_TBUS_File

Purpose: This routine copies a NESDIS TBUS file and renames it to conform to CIRA naming

conventions. This routine expects the new TBUS file to be called

<tbus_dir>tbus.new and renames the file to <tbus_dir>NESDIS\tbus.yyddd

where yyddd are determined from the file contents.

subroutine copy_nesdis_tbus_file (tbus_dir)

character (len = MAX_PATH), intent (IN) :: tbus_dir ! output TBUS directory name

4.1.3.7 Compute_TPW_Percent

Purpose: This routine computes the TPW percent of weekly NVAP normal (1988-1999).

Examine the source codes and external documentation materials for more details.

subroutine compute_tpw_percent (merged_tpw_file, nvap_mean_file, output_pct_file)

character (len = MAX_PATH), intent (IN) :: merged_tpw_file ! input file name

character (len = MAX_PATH), intent (IN) :: nvap_mean_file ! NVAP mean file name

character (len = MAX_PATH), intent (OUT) :: output_pct_file ! output file name

4.1.3.8 Create_TPW_Correction

Purpose: This routine creates the total precipitable water pentad correction statistics. Note: This

routine creates the ASCII TPW correction statistics files used by the

apply_tpw_correction routine.

subroutine create_tpw_correction (input_file_spec, output_dir)

DPEAS User’s Guide 29

CSU/CIRA Dec 2011

character (len = MAX_PATH), intent (IN) :: input_file_spec ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

4.1.3.9 GOES_SNDR_TPW_Merge

Purpose: This routine reads the CIMSS GOES Sounder ASCII data files and merges the

Blended TPW product with the GOES Sounder data. Examine the source codes and

external documentation materials for more details.

subroutine goes_sndr_tpw_merge (output_merged_tpw_file, goes_ascii_data_file)

character (len = MAX_PATH), intent (IN) :: output_merged_tpw_file ! input file name

character (len = MAX_PATH), intent (IN) :: gps_ascii_data_file ! GPS file name

4.1.3.10 GPS_TPW_Interpolate

Purpose: This routine reads the NOAA/ESRL/GSD GPS ASCII data files and merges the

Blended TPW product with the GOES Sounder data. Examine the source codes and

external documentation materials for more details.

subroutine gps_tpw_interpolate (merged_tpw_file, gps_ascii_data_file, gps_station_file,

output_gps_merge_file, max_reasonable_tpw, landmask_file)

character (len = MAX_PATH), intent (IN) :: merged_tpw_file ! input file name

character (len = MAX_PATH), intent (IN) :: gps_ascii_data_file ! GPS file name

character (len = MAX_PATH), intent (IN) :: gps_station_file ! GPS station file name

character (len = MAX_PATH), intent (OUT) :: output_gps_merge_file ! output file name

real, intent (IN), optional :: max_reasonable_tpw ! max. TPW value

character (len = MAX_PATH), intent (IN) :: goes_east_ascii_file ! GOES-E file name

character (len = MAX_PATH), intent (IN) :: goes_west_ascii_file ! GOES-W file name

character (len = MAX_PATH), intent (IN), optional :: landmask_file ! landmask file

4.1.3.11 RR_Statistics

Purpose: This routine creates the rainfall rate correction statistics. Note: This routine creates the

ASCII RR correction statistics files used by the apply_rr_correction routine.

subroutine rr_statistics (input_file_spec, output_dir)

character (len = MAX_PATH), intent (IN) :: input_file_spec ! input file name

character (len = MAX_PATH), intent (IN) :: output_dir ! output directory

4.1.3.12 Write_McIDAS

Purpose: This routine writes a DPEAS data structure data item to a McIDAS format data file.

subroutine write_mcidas (mapped_file, output_parameter, output_file, timesat, smooth)

character (len = MAX_PATH), intent (IN) :: mapped_file ! input HDF-EOS file name

character (len = MAX_PATH), intent (IN) :: output_parameter ! output data item name

character (len = MAX_PATH), intent (IN) :: output_file ! output file name

logical, intent (IN) :: timesat ! time and satellite, if .TRUE.

integer, intent (IN) :: smooth ! smoothing factor

DPEAS User’s Guide 30

CSU/CIRA Dec 2011

4.2 Key DPEAS Structures

4.2.1 DPEAS Memory Data Structure

The DPEAS memory data structure is a series of arrays that mimic the HDF-EOS data format

design. It is only present in the memory of the machines and does not exist as a file on the drive.

The memory is referenced via a series of Fortran pointers. The top-level pointers are referred by

their virtual file names. Thus, the structure looks like an imaginary hard drive. This allows data

fields and a variety of complex elements to be referenced by the various generalized routines.

The easiest way to explore the DPEAS memory data structure is to view it with the DPEAS

intrinsic routine DPE_WRITE_DATA_STRUCTURE. This routine will dump the contents of the

memory structure (but not the data) to the DPEAS output. This is very useful for viewing and

verifying that new data sets have been read into DPEAS correctly. A good HDF-EOS viewer or

browser will perform the same functionality.

A freeware HDF-EOS browser is included on the DPEAS CD-R under the \DPEAS files\

directory. Also included under that directory are many HDF-EOS file examples, which you can

browse and examine using the DPEAS tools. To read a “pure” HDF-EOS file (see Jones and

Vonder Haar, 2002) within DPEAS, use the READ_HDFEOS DPEAS intrinsic routine.

The full description of the DPEAS memory data structure is beyond the scope of this document.

However, it is discussed in the companion technical document, DPEAS Programmer’s Guide,

for those who are interested or require a better understanding. A definitive source of HDF-EOS

information is the HDF-EOS Library User’s Guide for the ECS project, Volume 1: Overview and

Examples (http://edhs1.gsfc.nasa.gov/waisdata/sdp/pdf/tp17060001.pdf).

4.2.2 DPEAS Directory Structure

The following DPEAS subdirectories are necessary for DPEAS to function correctly. Do not

attempt to run DPEAS without these directories:

DPEAS\bin

The bin directory contains compiled executables.

DPEAS\data

The data directory contains input and output data files, as well as DPEAS processing state

information (see comments below related to the DPEAS\data\work directory).

DPEAS\data\input

This is the main user input directory. It is suggested (but not required) that all user-created

DPEAS input script files should reside in this directory. The input files are ASCII text files

and thus are editable by any common ASCII file editor (e.g., NOTEPAD). A common error

is to assume that the input files are Fortran source files and are therefore in need of

compilation. This is not the case. The input files are merely interpreted ASCII script files that

http://edhs1.gsfc.nasa.gov/waisdata/sdp/pdf/tp17060001.pdf

DPEAS User’s Guide 31

CSU/CIRA Dec 2011

use the familiar Fortran 90 syntax. This should allow users (at least those with some Fortran

background) to have instant familiarity with the DPEAS user interface. DPEAS uses pseudo-

Fortran code as its input file. This does not mean it needs a compiler. DPEAS will interpret

the code in real-time, skipping the normal compilation step. This results in a multitude of

benefits, which will become apparent with use of the DPEAS system.

DPEAS\data\output

This is the main user output directory. Its use is optional, as other data directory organization

schemes could be used instead.

DPEAS\data\work

The work directory is used by DPEAS to write temporary working files or current process

state information. Normally, DPEAS cleans up these files as needed so that no user

intervention is needed.

DPEAS\logs

The logs directory contains all log files.

DPEAS\monitoring

The monitoring directory contains files related to the monitoring program.

DPEAS\scripts

The scripts directory contains all script files.

DPEAS\setup

The setup directory contains configuration and setup files.

DPEAS\setup\configuration\build

The build directory is used to store information regarding the DPEAS build version. Users

should not modify this directory. DPEAS updates these files as needed. No user intervention

is necessary.

DPEAS\setup\configuration\database

The database directory is used by DPEAS to write the DPEAS database files for each

DPEAS node. Users should not modify this directory. DPEAS updates these files as needed.

No user intervention is necessary.

DPEAS\setup\configuration\resource

The resource directory is used to specify available nodes for use in DPEAS processing. Each

DPEAS node should have its own resource file. The resource files are ASCII text files. They

can be modified at any time, even while DPEAS is executing (See section 3.3.2 for

information about the resource file configuration).

DPEAS User’s Guide 32

CSU/CIRA Dec 2011

DPEAS\src

The src directory contains all source codes. The current DPEAS Windows source distribution

exists under the DPEAS\src\DPEAS subdirectory.

4.3 DPEAS Parallel Processing

DPEAS is capable of running on several computers (nodes) simultaneously. DPEAS implements

the multinode processing with a MASTER/SLAVE paradigm. Resource files are used to specify

attributes of the master and slave nodes. The node on which the DPEAS executable resides is the

master node. The master node delegates data processing chores to the DPEAS slave nodes.

Multinode processing is implemented using an “independent DO loop construct”, an idea

borrowed from High Performance Fortran (HPF). Primary level DO loops in a DPEAS master

input file are intrinsically assumed to be independent DO loops, thus iterations of the DO loop

may be performed in any order. The designated slave node processes remaining nested DO

loops. Inter-process communication is prohibited between the independent DO loop block and

the host DPEAS program variables. Thus, variable values modified within an independent DO

loop are not available to the host DPEAS program. To turn off the automatic parallelization of

DPEAS input, add call DPE_SLAVE at the start of the execution part of the input file. An

example of the DPEAS data processing flow is shown below. Each block is a group of Fortran

90 statements that are interpreted during DPEAS execution

4.3.1 Running DPEAS in Parallel Mode

Assuming that you’ve configured DPEAS and BJS as described in Section 3.3, submit your

DPEAS batch file to BJS for execution with the argument containing the relative path name to

the input DPEAS script file from the DPEAS executable.

Fig. 1 illustrates the DPEAS parallelism and Fig. 2 shows how to monitor parallel mode DPEAS

runs with the BJS Client. Fig. 3 contains a high-level schematic of the DPEAS data processing

flow as the DPEAS Fortran interpreter automatically segments the main input into subtasks.

DPEAS User’s Guide 33

CSU/CIRA Dec 2011

Figure 1: DPEAS Parallelism

Figure 2: Monitoring Parallel Mode DPEAS Runs with the Batch Job Server Client

Do loop contents

are sent to other

resources in parallel

The new jobs run the

same “DPEAS.exe”,

but execute only the

subtask operations

Completed Jobs allow

additional jobs to

start

DPEAS submitted jobs are

named: “DPE_AAAAA_NNNNN”

Shows Pedigree

“Instance” and “Iteration”

DPEAS User’s Guide 34

CSU/CIRA Dec 2011

Figure 3: DPEAS Data Processing Flow

4.3.2 Aborting a Parallel Mode Job with the Batch Job Server Client

To abort a parallel mode job manually:

1. Cancel the Master job

2. Allow Spawned jobs to run and complete normally or cancel them manually (this works

even if they were submitted by another user)

a. Examine the Spawned job names (e.g. “DPE_AAAAA_nnnnn”)

b. Use the BJS Client to connect to the specified machine

c. Cancel the remaining spawned jobs (remember, they may have finished by the

time you get to them)

d. If canceling another user’s job, his or her master job will continue to wait until the

canceled job is manually restarted on another system. Therefore, it is imperative

that users communicate with each other when canceling another user’s master job.

4.4 Log Files

DPEAS directs all message output to the standard output device (normally the DOS command

window). When running in batch mode, this output is captured as a log file. The BJS client can

DPEAS User’s Guide 35

CSU/CIRA Dec 2011

browse all DPEAS log files interactively and is very useful when exploring the DPEAS output

results.

4.4.1 File I/O Messages

To determine what fortran file I/O is used in DPEAS, search for the DPEAS error messages

containing “%SYS_OPEN-I-FILE-“<filename>”, ACTION = <action_status>”.

In addition the DPEAS C/C++ I/O libraries track their file I/O by the

“<PROCEDURE_NAME>-I–FILE-<filename>“ error message,

or through more explicit “<PROCEDURE_NAME>-I–INPUT_FILE-<filename> “, and

“<PROCEDURE_NAME>-I-OUTPUT_FILE-<filename>“, error messages.

The DPEAS data mirroring facility issues its own error messages, that start with the string

pattern “%SYS_MIRROR*”.

Other DPEAS file I/O error messages denote particular processing states that are dependent on

the specific DPEAS routine.

4.4.2 Error Handling

DPEAS attempts to handle abnormal terminations and will exit with the appropriate status

automatically. The error levels in Table 1 are recognized.

Table 1: DPEAS Error Levels

ID Error Level Behavior

S Success DPEAS continues

I Informational DPEAS continues

W Warnings DPEAS continues

R Return DPEAS returns from the current subtask and continues

E Errors DPEAS conditionally terminates (depending upon the processing

context)

F Fatal Errors DPEAS terminates

DPEAS User’s Guide 36

CSU/CIRA Dec 2011

5 DPEAS ADVANCED FEATURES

5.1 Parallelism

DPEAS has been tested in a 20-processor configuration, and simulation tests have shown that it

is capable of scaling to approximately 2000 processors with current hardware capabilities

available at CIRA. Parallelization capabilities are performed by dynamically propagating the

executable to additional computing nodes as needed. Thus, the system replicates itself as needed

and reports to the host program when program segments are complete. This is automated within

DPEAS, and the user code is distributed easily, since it is part of the DPEAS executable. The

replication process is controlled by configuration data in simple text files. Asynchronous and

independent parallel DO loop constructs are supported in the input script semantics, thus

allowing for easy parallelization. They are controlled by simple input commands that switch the

parallelization mode to synchronous or asynchronous behaviors. This allows a user to simply

flag a section that requires synchronous behavior.

5.1.1 Synchronous Parallelism

By default, DPEAS submits jobs in synchronous mode. That is, each parallel program segment

(e.g. DO loop block) is completed in sequence, with jobs in the next program segment pending

until the current parallel program segment is completed. This behavior can also be invoked by

calling the dpe_mode_synchronous routine directly (more information is available in section

4.1.1.8).

5.1.2 Asynchronous Parallelism

DPEAS is also capable of asynchronous parallelism behaviors. In asynchronous mode, each

program segment is performed independently and without regard to the completion of the

previous program segment. This mode assumes that each program segment is fully independent

of all other program segments. The asynchronous mode only resynchronizes at the end of the

master script or when invoked by calling the dpe_mode_asynchronous routine (more

information is available in section 4.1.1.7).

5.2 Data Mirroring

The DPEAS data mirroring capabilities are provided by the DPEAS near-real time replication

file subsystem (NRTRFS). The NRTFRS is necessary for continuance of the data integrity within

a cluster during failover and recovery operations.

The system is tightly integrated with the HDF-EOS Virtual I/O Subsystem (HVIOS) and

includes a user-callable interface. The interface overloads the system-dependent file open and

close statements with the file replication capabilities of the NRTRFS. The file replication actions

are constrained by the time and date that the file was last modified. For example, if a source

file’s last modification time is given by S, and if the replication target file’s modification time (if

DPEAS User’s Guide 37

CSU/CIRA Dec 2011

it exists) is given by T, the cases in Table 2 apply. In table 2, Δ = T – S and the defaults for MIN

and MAX are –12 and 0 h, respectively. This constructs a temporal window of opportunity that

designates when replication will be performed. The MIN constraint is set to -∞ to perform a

complete replication cycle. The constraint limits the consumption of resources by the NRTRFS

and allows DPEAS to continue processing with minimal downtime after a failover event.

Table 2: DPEAS Data Mirroring as a Function of the Replication Target File’s Modification Time

Case T1 No operation Δ < MIN

Case T2 Replicate MIN >Δ > MAX

Case T3 No operation Δ > MAX

The replication configuration is contained in ASCII text files for easy modification and use. It is

possible to create a distributed peer-to-peer (P2P) computing cluster in DPEAS that would

continue to function even as each node in the cluster was powered off. The P2P nature of

DPEAS would simply reroute the formerly active parallel tasks on the down nodes to other

computing nodes, and continue on, making use of the replicated data sources that are maintained

via the NRTRFS. On recovery, the NRTRFS will reconstruct the replicated drives. If a particular

node has been down for a long time, a complete replication cycle would need to be initiated

manually. This can occur in parallel with concurrent operational computing tasks, since file

locking mechanisms are built into the DPEAS architecture.

5.3 Fault Resilience

DPEAS is capable of running in a fully mirrored configuration with a primary and backup

system (Figure 4). This provides failover capabilities should the primary system experience a

hardware-related failure. The failover procedure is fully automated so that data operations

continue in the event of a hardware (e.g. disk drive) failure. The backup system is a computer

that otherwise serves as a normal worker node in the DPEAS parallel cluster. Restoration of the

system is manually initiated. Movement of the DPEAS system between the primary and backup

systems is facilitated by the DPEAS system state information, which is mirrored to the OS file

system of the backup system. The failover function is performed by specialized static scripts that

work in coordination with the DPEAS System State Manager (SSM). The DPEAS SSM

maintains and updates the DPEAS system state information. The DPEAS system state

information is stored in simple ASCII text files on the primary system and is usually replicated to

other nodes to ensure system reliability in the event of a hardware failure. In addition to the

hardware failover capabilities, various software error states are monitored so that DPEAS can

shut down errant processes on remote nodes without user intervention.

DPEAS User’s Guide 38

CSU/CIRA Dec 2011

Figure 4: Normal Mode of the DPEAS Hardware Configuration

Failover Steps

(Automated)

1. Synchronize states

2. Promote the Backup

Restore Steps

(Manual)

1. Demote the Backup

2. Synchronize states

3. Reactivate Primary

Primary Backup W 1 W 2

Primary Backup W 1 W 2

Primary Backup

W 1 W 2

Primary Backup

W 1 W 2

b)

c) Failover Mode d)

Mirrored

Set

a) Normal Mode

Mirrored

Set

PROCESSOR VIEW STORAGE VIEW

a) The normal mode of the DPEAS hardware configuration is

such that the primary node can submit processing subtasks to

any worker node in a multiple cluster environment.

b) The backup system routinely mirrors the primary system

state. This makes the system resilient to hardware failures. After

a primary system failure the subsystem goes into failover mode.

c) In failover mode, automated DPEAS failover procedures

promote the backup node to take over the remaining processing

duties.

d) Also in failover, the NRTRFS automatically redirects all I/O

requests to the mirrored files. The DPEAS system state is

synchronized before promotion and demotion of the DPEAS

coordinating node, allowing a controlled failover to occur.

XX

DPEAS User’s Guide 39

CSU/CIRA Dec 2011

6 APPENDIX A: “A DYNAMIC PARALLEL DATA-COMPUTING

ENVIRONMENT FOR CROSS-SENSOR SATELLITE DATA MERGER

AND SCIENTIFIC ANALYSIS” APPENDIX A: “A DYNAMIC

PARALLEL DATA-COMPUTING ENVIRONMENT FOR CROSS-

SENSOR SATELLITE DATA MERGER AND SCIENTIFIC ANALYSIS”

7 ACKNOWLEDGEMENTS

The original edition (January 2005) of this DPEAS User’s guide was created by Katherine P.

Kidder, Andrew S. Jones and Stanley Q. Kidder. It has been updated to reflect the DPEAS 2.x

and 3.x modifications.

