CIRA Seminars

Filter By Seminar Year (2007 thru 2017)

2017 CIRA Seminars

Thursday, February 23, 2017 - 03:30 @ ATS101
Presenter: Nadir Jeevanjee, Princeton/Geophysical Fluid Dynamics Laboratory

Global warming simulations robustly show that mean precipitation increases at 1-3% per Kelvin, but we do not know what sets these values. Mean precipitation is constrained by radiative cooling, however, and we demonstrate here that radiative cooling profiles exhibit a certain invariance under warming when plotted in temperature coordinates. This invariance can then be leveraged to derive simple analytical equations for precipitation change with warming.

Friday, February 17, 2017 - 11:15 @ ATS 101
Presenter: Zhien Wang, University of Wyoming

University of Wyoming King Air (UWKA) is a part of NSF-supported Lower Atmosphere Observing Facilities (LAOF). Through multi-year development efforts, UWKA has equipped with integrated observation capabilities for cloud dynamics and microphysics, aerosols, and environment conditions through combining lidar, radar, radiometer and in situ measurements. Approaches were developed to retrieve droplet and ice concentrations in stratiform clouds from combined lidar-radar measurements.

Friday, February 10, 2017 - 11:15 @ ATS 101
Presenter: David John Gagne, NCAR

The weather forecasting process has grown more complex in recent years with the growing amount of observational data and model output available to weather forecasters and the trend toward providing more impact-based decision support services. In order to assist forecasters and end-users with the task of managing the firehose of data, I have developed and evaluated machine learning forecast guidance systems for different high-impact weather phenomena.

Friday, February 3, 2017 - 11:15 @ ATS 101
Presenter: Jay Mace, University of Utah

The extensive cloudiness and resulting high albedo of the Southern Oceans (SO) are predominantly due to the occurrence of widespread marine boundary layer (MBL) clouds. Recent work finds correlations between biogenically enhanced cloud condensation nuclei concentrations and cloud droplet number concentrations derived from passive satellite data.

Friday, February 3, 2017 - 10:00 @ CIRA Directors Conference Room
Presenter: Andrew Kren, NOAA ESRL,

A key project within the National Oceanic and Atmospheric Administration (NOAA) Global Observing Systems Analysis (GOSA) group is the Sensing Hazards with Operational Unmanned Technology (SHOUT) project. One of the main objectives of SHOUT is to conduct both Observing System Experiments (OSEs) and Observing System Simulation Experiments (OSSEs) to evaluate the impact of real and simulated Unmanned Aircraft Systems (UAS) data on weather forecasts of tropical cyclones and high-impact weather events over the United States.

Friday, January 20, 2017 - 11:15 @ ATS 101
Presenter: John Peters, CSU Postdoctoral Fellow

Pressure perturbations are regions of anomalously low or high pressure in deep convection and play key roles in modulating the magnitude and distribution of vertical velocities within cumulus clouds. A cloud’s vertical momentum budget is primarily regulated by two pressure forces: Effective buoyancy pressure acceleration (EBPA), and dynamic pressure acceleration (DPA).